Modeling binaural responses in the auditory brainstem to electric stimulation of the auditory nerve.

J Assoc Res Otolaryngol

Biomedical Engineering Department, Hearing Research Center, Boston University, Boston, MA, 02215, USA,

Published: February 2015

Bilateral cochlear implants (CIs) provide improvements in sound localization and speech perception in noise over unilateral CIs. However, the benefits arise mainly from the perception of interaural level differences, while bilateral CI listeners' sensitivity to interaural time difference (ITD) is poorer than normal. To help understand this limitation, a set of ITD-sensitive neural models was developed to study binaural responses to electric stimulation. Our working hypothesis was that central auditory processing is normal with bilateral CIs so that the abnormality in the response to electric stimulation at the level of the auditory nerve fibers (ANFs) is the source of the limited ITD sensitivity. A descriptive model of ANF response to both acoustic and electric stimulation was implemented and used to drive a simplified biophysical model of neurons in the medial superior olive (MSO). The model's ITD sensitivity was found to depend strongly on the specific configurations of membrane and synaptic parameters for different stimulation rates. Specifically, stronger excitatory synaptic inputs and faster membrane responses were required for the model neurons to be ITD-sensitive at high stimulation rates, whereas weaker excitatory synaptic input and slower membrane responses were necessary at low stimulation rates, for both electric and acoustic stimulation. This finding raises the possibility of frequency-dependent differences in neural mechanisms of binaural processing; limitations in ITD sensitivity with bilateral CIs may be due to a mismatch between stimulation rate and cell parameters in ITD-sensitive neurons.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4310862PMC
http://dx.doi.org/10.1007/s10162-014-0492-6DOI Listing

Publication Analysis

Top Keywords

electric stimulation
16
stimulation rates
12
stimulation
9
binaural responses
8
auditory nerve
8
bilateral cis
8
model neurons
8
excitatory synaptic
8
membrane responses
8
electric
5

Similar Publications

Hypoxia is not uncommon in elderly patients during painless gastrointestinal endoscopy. This study aimed to determine the effectiveness of transcutaneous electrical acupoint stimulation (TEAS) in reducing the occurrence of hypoxia symptoms in elderly patients. Patients were randomly and equally grouped into sham control ( = 109) or TEAS group ( = 109) by using the random number table method.

View Article and Find Full Text PDF

Background: Exercise-induced hypoalgesia (EIH) is characterized by a reduction in pain perception and sensitivity across both exercising and non-exercising body parts during and after a single bout of exercise. EIH is mediated through central and peripheral mechanisms; however, the specific effect of muscle contraction alone on EIH remains unclear. Moreover, previous studies on electrical muscle stimulation (EMS) have primarily focused on local analgesic effects, often relying on subjective pain reports.

View Article and Find Full Text PDF

A novel variant of paired-associative stimulation (PAS) consisting of high-frequency peripheral nerve stimulation (PNS) and high-intensity transcranial magnetic stimulation (TMS) above the motor cortex, called high-PAS, can lead to improved motor function in patients with incomplete spinal cord injury. In PAS, the interstimulus interval (ISI) between the PNS and TMS pulses plays a significant role in the location of the intended effect of the induced plastic changes. While conventional PAS protocols (single TMS pulse often applied with intensity close to resting motor threshold, and single PNS pulse) usually require precisely defined ISIs, high-PAS can induce plasticity at a wide range of ISIs and also in spite of small ISI errors, which is helpful in clinical settings where precise ISI determination can be challenging.

View Article and Find Full Text PDF

Can earlobe stimulation serve as a sham for transcutaneous auricular vagus stimulation? Evidence from an alertness study following sleep deprivation.

Psychophysiology

January 2025

Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, China.

Transcutaneous auricular vagus nerve stimulation (taVNS) has garnered increasing attention as a safe and effective peripheral neuromodulation technique in various clinical and cognitive neuroscience fields. However, there is ongoing debate about whether the commonly used earlobe control interferes with the objective assessment of taVNS regulatory effects. This study aims to further explore the regulatory effects of taVNS and earlobe stimulation (ES) on alertness levels and physiological indicators following 24 h of sleep deprivation (SD), based on previous findings that both taVNS and ES showed significant positive effects.

View Article and Find Full Text PDF

Adaptive remodeling of rat adrenomedullary stimulus-secretion coupling in a chronic hypertensive environment.

Cell Mol Life Sci

December 2024

Univ Angers, INSERM, CNRS, MITOVASC, Équipe CARME, SFR ICAT, F-49000 Angers, France.

Chronic elevated blood pressure impinges on the functioning of multiple organs and therefore harms body homeostasis. Elucidating the protective mechanisms whereby the organism copes with sustained or repetitive blood pressure rises is therefore a topical challenge. Here we address this issue in the adrenal medulla, the master neuroendocrine tissue involved in the secretion of catecholamines, influential hormones in blood pressure regulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!