Loss of notochordal cell phenotype in 3D-cell cultures: implications for disc physiology and disc repair.

Arch Orthop Trauma Surg

Department of Orthopaedic Surgery and Trauma Surgery, Heidelberg University Hospital, 69118, Heidelberg, Germany.

Published: December 2014

Introduction: Embryonic notochordal disc nucleus cells (NC) have been identified to protect disc tissue against disc degeneration but in human beings NC phenotype gets lost with aging and the pathophysiological mechanisms are poorly understood. NC may stimulate other cells via soluble factors, and NC-conditioned medium can be used to stimulate matrix production of other disc cells and mesenchymal stem cells and thus may be of special interest for biological disc repair. As this stimulatory effect is associated with the NC phenotype, we investigated how cell morphology and gene-expression of the NC phenotype changes with time in 3D-cell culture.

Materials And Methods: NC and inner annulus chondrocyte-like cells (CLC) from immature pigtails (freshly isolated cells/tissue, 3D-alginate beads, 3D-clusters) were cultured for up to 16 days under normoxia and hypoxia. Protein-expression was analysed by immunohistology and gene-expression analysis was carried out on freshly isolated cells and cultured cells. Cell morphology and proliferation were analysed by two-photon-laser-microscopy.

Results: Two-photon-laser-microscopy showed a homogenous and small CLC population in the inner annulus, which differed from the large vacuole-containing NC in the nucleus. Immunohistology found 93 % KRT8 positive cells in the nucleus and intracellular and pericellular Col2, IL6, and IL12 staining while CLC were KRT8 negative. Freshly isolated NC showed significantly higher KRT8 and CAIII but lower Col2 gene-expression than CLC. NC in 3D-cultures demonstrated significant size reduction and loss of vacuoles with culture time, all indicating a loss of the characteristic NC morphology. Hypoxia reduced the rate of decrease in NC size and vacuoles. Gene-expression of KRT8 and CAIII in NC fell significantly early in culture while Col2 did not decrease significantly within the culture period. In CLC, KRT8 and CAIII gene-expression was low and did not change noticeably in culture, whereas Col2 expression fell with time in culture.

Conclusions: 3D-culture caused a rapid loss of NC phenotype towards a CLC phenotype with disappearance of vacuoles, reduced cell size, increased proliferation, and gene-expression changes. These findings may be related to NC nutritional demands and support the latest hypothesis of NC maturation into CLC opposing the idea that NC get lost in human discs by cell death or apoptosis to be replaced by CLC from the inner annulus.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00402-014-2097-2DOI Listing

Publication Analysis

Top Keywords

inner annulus
12
freshly isolated
12
krt8 caiii
12
disc repair
8
cells
8
cell morphology
8
clc
8
clc krt8
8
culture col2
8
disc
7

Similar Publications

Thermo-fluid characteristics and exergy analysis of a twisted tube helical coil.

Sci Rep

November 2024

Department of Refrigeration and Air Conditioning Technology, Faculty of Technology and Education, Helwan University, 11282, Cairo, Egypt.

In the present investigation, the exergy of an innovative technique involving the integration of curved helical tubes with twisted passages was experimentally presented. This technique aims to improve the thermofluid characteristics by involving the swirl intensity of fluid flow in a twisted tube helical coil (TTHC). Six identical geometries with different pitch ratios Υ of 36 mm, 54 mm, and ∞ (smooth/no twisted) were experimentally explored at two different inner tube profiles of triangular and square cross-sections in counter flow arrangements.

View Article and Find Full Text PDF

Purpose: Porcine cervical spines are commonly used as a surrogate for human lumbar spines due to their similar anatomic and mechanical characteristics. Despite their use in spinal biomechanics research, porcine annulus fibrosus (AF) yield and ultimate properties have not been fully evaluated. This study sought to provide a novel dataset of elastic, yield, and ultimate properties of the porcine AF loaded in the circumferential direction.

View Article and Find Full Text PDF

The degeneration of the intervertebral disc annulus fibrosus poses significant challenges in understanding and predicting its mechanical behavior. In this article, we present a novel approach, enriched with detailed insights into microstructure and degeneration progression, to accurately predict the mechanics of the degenerated human annulus. Central to this framework is a fully three-dimensional continuum-based model that integrates hydration state and multiscale structural features, including proteoglycan macromolecules and interpenetrating collagen fibrillar networks across various hierarchical levels within the multi-layered lamellar/inter-lamellar soft tissue, capable of sustaining deformation-induced damage.

View Article and Find Full Text PDF

Sustained release of proteins from contact lenses with porous annulus.

Drug Deliv Transl Res

October 2024

Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO, 80401, USA.

Ophthalmic drugs are administered to the front of the eye by eyedrops. The bioavailability of drugs delivered via eye drops is low due to tear turnover. Contact lenses can address some deficiencies of eye drops by sustaining the delivery of drugs, but commercial contact lenses have small pore sizes that cannot load biologics, which are becoming more common for treating ophthalmic diseases.

View Article and Find Full Text PDF

Stress relaxation behavior of the transition zone in the intervertebral disc.

Acta Biomater

November 2024

School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, NSW 2007, Australia; Department of Biomedical Engineering, School of Engineering, RMIT University, VIC 3000, Australia. Electronic address:

The stress relaxation of the TZ region, located at the interface of the Annulus Fibrosus (AF) and Nucleus Pulposus (NP) of the disc, and how its stress is relaxed compared to the adjacent regions is unknown. The current study aimed to identify the TZ stress relaxation properties under different strain magnitudes (0.2, 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!