Mineralocorticoid effects in the late gestation ovine fetal lung.

Physiol Rep

Department of Pharmacodynamics, University of Florida, Gainesville, Florida, USA Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA.

Published: July 2014

AI Article Synopsis

Article Abstract

This study was designed to determine the effects of corticosteroids at MR in the late-gestation fetal lung. Since both the mineralocorticoid receptor (MR) and the glucocorticoid receptor (GR) are expressed at relatively high levels in the fetal lung, endogenous corticosteroids may act at MR as well as GR in the preterm fetal lung. The GR agonist, betamethasone, the MR agonist, aldosterone, or both were infused intravenously for 48 h in ovine fetuses of approximately 130 days gestation. Effects on airway pressures during stepwise inflation of the in situ lung, expression of ENaC alpha (SCNN1A), ENaC beta (SCNN1B), and Na,K ATPase (ATP1A1), and elastin and collagen content were determined after the infusions. We found that aldosterone significantly reduced the airway pressure measured during the initial step in inflation of the lung, although aldosterone had no overall effect on lung compliance, nor did aldosterone induce expression of ENaCα, ENaCβ or Na,K ATPaseα1. Betamethasone significantly increased expression of the epithelial sodium channel (ENaC) subunit mRNAs, and collagen and elastin content in the lungs, although this dose of betamethasone also had no effect on lung compliance. There was no synergy between effects of the MR and GR agonists. Transcriptomic analysis suggested that although aldosterone did not alter genes in pathways related to epithelial sodium transport, aldosterone did alter genes in pathways involved in cell proliferation in the lungs. The results are consistent with corticosteroid-induced fluid reabsorption at birth through GR rather than MR, but suggest that MR facilitates lung maturation, and may contribute to inflation with the first breaths via mechanisms distinct from known aldosterone effects in other epithelia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4187571PMC
http://dx.doi.org/10.14814/phy2.12066DOI Listing

Publication Analysis

Top Keywords

fetal lung
16
lung
9
lung compliance
8
epithelial sodium
8
aldosterone alter
8
alter genes
8
genes pathways
8
aldosterone
7
mineralocorticoid effects
4
effects late
4

Similar Publications

Expression of ABCB1, ABCC1, and LRP in Mesenchymal Stem Cells from Human Amniotic Fluid and Bone Marrow in Culture-Effects of In Vitro Osteogenic and Adipogenic Differentiation.

Int J Mol Sci

January 2025

Lipids, Oxidation, and Cell Biology Group, Laboratory of Immunology (LIM19), Heart Institute (InCor), Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (HCFMUSP), São Paulo 05403-900, Brazil.

Mesenchymal stem cells (MSCs) are multipotent cells with the potential to differentiate into various lineages. They have also the potential to protect themselves against harmful stimuli to maintain their functional integrity. Drug resistance-related transporters such as ABCB1 (P-glycoprotein; P-gp), ABCC1 (MRP1; multidrug resistance-related Protein 1), and LRP (lung resistance protein) may protect MSCs against toxic substances such as chemotherapeutic agents.

View Article and Find Full Text PDF

The X-Linked Tumor Suppressor TSPX Regulates Genes Involved in the EGFR Signaling Pathway and Cell Viability to Suppress Lung Adenocarcinoma.

Genes (Basel)

January 2025

Division of Cell and Developmental Genetics, Department of Medicine, Veterans Affairs Medical Center, and the Institute for Human Genetics, University of California, San Francisco, CA 94121, USA.

TSPX is an X-linked tumor suppressor that was initially identified in non-small cell lung cancer (NSCLC) cell lines. However, its expression patterns and downstream mechanisms in NSCLC remain unclear. This study aims to investigate the functions of TSPX in NSCLC by identifying its potential downstream targets and their correlation with clinical outcomes.

View Article and Find Full Text PDF

Efficacy of Fetal Wharton's Jelly Mesenchymal Stem Cells-Derived Small Extracellular Vesicles in Metabolic Syndrome.

Biomolecules

January 2025

Department of Tissue Engineering and Regenerative Medicine (DTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Cheras, Kuala Lumpur 56000, Malaysia.

Background/objective: Metabolic syndrome (MetS) is characterized by abdominal obesity, increased blood pressure (BP), fasting blood glucose (FBG) and triglyceride levels, and reduced high-density lipoprotein (HDL) levels. This study aims to investigate the efficacy of the Wharton's jelly mesenchymal stem cells (WJMSCs)-derived small extracellular vesicles' (sEVs) preparations in managing MetS.

Method: Twenty-four rats were fed with a high-fat and high-fructose diet to induce MetS for 16 weeks and randomized into three groups ( = 8/group): a MetS Control group treated with normal saline, MetS Low Dose (LD) group treated with a LD of sEVs preparations (3 × 10 particle/rat), and MetS High Dose (HD) group treated with a HD of sEVs preparations (9 × 10 particles/rat).

View Article and Find Full Text PDF

Lymphangioleiomyomatosis (LAM) is a rare, progressive, and poor-prognosis systemic disorder that primarily affects women of reproductive age, with a higher prevalence among individuals of Caucasian origin. However, there are limited reliable data on the prevalence of LAM during pregnancy. The fulminant respiratory clinical presentation that often includes progressive dyspnea on exertion, cough, or hemoptysis, frequently complicated by pneumothorax, and the increased risk of spontaneous abortion due to increased estrogen and progesterone production during gestation, are arguments that most often make the diagnosed woman avoid pregnancy.

View Article and Find Full Text PDF

Background: Perinatal nicotine exposure (PNE) induces pulmonary dysplasia in offspring and it increases the risk of respiratory diseases both in offspring and across generations. The maternal gut microbiota and its metabolites, such as short-chain fatty acids (SCFAs), can regulate fetal lung development and are susceptible to nicotine exposure. Therefore, modulation of PNE-induced changes in maternal gut microbiota and SCFAs may prevent the occurrence of pulmonary dysplasia in offspring.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!