Surface modification of silicon nanoparticles via molecular layer deposition (MLD) has been recently proved to be an effective way for dramatically enhancing the cyclic performance in lithium ion batteries. However, the fundamental mechanism of how this thin layer of coating functions is not known, which is complicated by the inevitable presence of native oxide of several nanometers on the silicon nanoparticle. Using in situ TEM, we probed in detail the structural and chemical evolution of both uncoated and coated silicon particles upon cyclic lithiation/delithation. We discovered that upon initial lithiation, the native oxide layer converts to crystalline Li2O islands, which essentially increases the impedance on the particle, resulting in ineffective lithiation/delithiation and therefore low Coulombic efficiency. In contrast, the alucone MLD-coated particles show extremely fast, thorough, and highly reversible lithiation behaviors, which are clarified to be associated with the mechanical flexibility and fast Li(+)/e(-) conductivity of the alucone coating. Surprisingly, the alucone MLD coating process chemically changes the silicon surface, essentially removing the native oxide layer, and therefore mitigates side reactions and detrimental effects of the native oxide. This study provides a vivid picture of how the MLD coating works to enhance the Coulombic efficiency, preserves capacity, and clarifies the role of the native oxide on silicon nanoparticles during cyclic lithiation and delithiation. More broadly, this work also demonstrates that the effect of the subtle chemical modification of the surface during the coating process may be of equal importance to the coating layer itself.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/nn505523c | DOI Listing |
Food Chem
January 2025
Department of Food Science and Technology, Jinan University, Guangzhou 510632, China. Electronic address:
As an essential B vitamin, folate participates in one‑carbon metabolism. The 5-methyltetrahydrofolate (5-MTHF) avoids the drawbacks associated with folic acid and native folylpolyglutamate folate in food, thereby emerging as a superior alternative to folate supplement. To enhance the stability and digestibility of 5-MTHF, nanoliposome (NL) was modified using a layer-by-layer self-assembly method with chitosan (CH) and pectin (P).
View Article and Find Full Text PDFMolecules
January 2025
Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia.
Sacha inchi ( L.), an oilseed native to the Peruvian rainforest, has garnered attention for its valuable components and its potential applications in the food, pharmaceutical, and nutraceutical industries. Sacha inchi oil is rich in fatty acids, particularly omega-3, omega-6, and omega-9, along with antioxidants such as tocopherols, which collectively contribute to cardiovascular health, antioxidant, anti-inflammatory, antiproliferative, and neuroprotective effects.
View Article and Find Full Text PDFJ Breath Res
January 2025
Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön Katu 34, Tampere, 33520, FINLAND.
The concentrations of nasal nitric oxide (nNO) vary in patients with chronic rhinosinusitis (CRS) supposedly depending upon whether the paranasal ostia are open or obstructed. Our aim was to assess whether nNO levels and their response to topical xylometazoline (a local vasoconstrictor used to alleviate nasal congestion) in patients with CRS differ between those with open or obstructed ostia and if the results were altered by the use of nasal corticosteroids. Methodology: Sixty-six patients with CRS (43% with nasal polyps) or recurrent acute rhinosinusitis and 23 healthy controls were included.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Nankai University, SKLEOC, 300071, Tianjin, CHINA.
Amino groups are abundant in both natural and synthetic molecules, offering highly accessible sites for modifying native biorelevant molecules. Despite significant progress with more reactive thiol groups, methods for connecting two amino groups with reversible linkers for bioconjugation applications remain elusive. Herein, we report the use of oxidative decarboxylative condensation of glyoxylic acid to crosslink two alkyl amines via a compact formamidine linkage, applicable in both intra- and intermolecular contexts.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China.
The interfacial reaction of a silicon anode is very complex, which is closely related with the electrolyte components and surface elements' chemical status of the Si anode. It is crucial to elucidate the formation mechanism of the solid electrolyte interphase (SEI) on the silicon anode, which promotes the development of a stable SEI. However, the interface reaction mechanism on the silicon surface is closely related to the surface components.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!