Metal nanoclusters consist of a few to a few hundred atoms and exhibit attractive molecular properties such as ultrasmall size, discrete energy levels, and strong fluorescence. Although patterning of these clusters down to the micro- or nanoscale could lead to applications such as high-density data storage, it has been reported only for inorganic matrices. Here we present submicron-scale mask-free patterning of fluorescent silver nanoclusters in an organic matrix. The nanoclusters were produced by direct laser writing in poly(methacrylic acid) thin films and exhibit a broadband emission at visible wavelengths with photostability that is superior to that of Rhodamine 6G dye. This fabrication method could open new opportunities for applications in nanophotonics like imaging, labeling, and metal ion sensing. We foresee that this method can be further applied to prepare other metal nanoclusters embedded in compositionally different polymer matrices.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nn5059503DOI Listing

Publication Analysis

Top Keywords

direct laser
8
laser writing
8
fluorescent silver
8
silver nanoclusters
8
metal nanoclusters
8
nanoclusters
5
writing photostable
4
photostable fluorescent
4
nanoclusters polymer
4
polymer films
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!