Derivative properties from high-precision equations of state.

J Phys Chem B

School of Chemical and Petroleum Engineering, Shiraz University, Mollasadra Avenue, Shiraz 71345, Iran.

Published: December 2014

In this study, the behavior of derivative properties estimated by equations of state, including isochoric heat capacity, isobaric heat capacity, speed of sound, and the Joule-Thomson coefficient for pure compounds and a mixture, has been investigated. The Schmidt-Wagner and Jacobsen-Stewart equations of state were used for predictions of derivative properties of 10 different pure compounds from various nonpolar hydrocarbons, nonpolar cyclic hydrocarbons, polar compounds, and refrigerants. The estimations were compared to experimental data. To evaluate the behavior of mixtures, the extended corresponding states principle (ECS) was studied. Analytical relationships were derived for isochoric heat capacity, isobaric heat capacity, the Joule-Thomson coefficient, and the speed of sound. The ECS calculations were compared to the reference surface data of methane + ethane. The ECS principle was found to generate data of high quality.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp508357fDOI Listing

Publication Analysis

Top Keywords

heat capacity
16
derivative properties
12
equations state
12
isochoric heat
8
capacity isobaric
8
isobaric heat
8
speed sound
8
joule-thomson coefficient
8
pure compounds
8
properties high-precision
4

Similar Publications

Article Synopsis
  • Rapid advancements in high-performance technologies, like EV batteries and AI systems, highlight the need for better thermal management solutions due to limitations of conventional phase change materials (PCMs).
  • A new PCM made from polyethylene oxide (PEO) and lignin was developed, addressing issues like phase leakage and instability by creating a durable interlocked structure that withstands high temperatures (up to 115 °C).
  • Testing shows that these lignin-modified PEO composites effectively absorb and release heat while maintaining their shape, making them a sustainable and efficient option for advanced thermal management, especially in battery thermal management systems (BTMSs).
View Article and Find Full Text PDF

Adaptation to Climate Change in Viticulture: The Role of Varietal Selection-A Review.

Plants (Basel)

January 2025

Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal.

Viticulture faces unprecedented challenges due to the rapidly changing climate, particularly in regions like the Mediterranean Basin. Consequently, climate change adaptation strategies are crucial in viticulture, with short-term strategies being widely used despite increasing concerns about their sustainability, and long-term strategies considered promising, though costly. A promising but understudied strategy is varietal selection, as grapevines exhibit vast intervarietal diversity with untapped potential for climate-resilient varieties.

View Article and Find Full Text PDF

Polyphenolic compounds are key elements in sectors such as pharmaceutics, cosmetics and food; thus, their physicochemical characterization is a vital task. In this work, the thermal behavior of seven polyphenols (-resveratrol, -polydatin, kaempferol, quercetin, myricetin, hesperidin, and (-)-epicatechin) was investigated with DSC (differential scanning calorimetry) and TGA (thermogravimetric analysis). Melting temperatures, enthalpies of fusion and decomposition temperatures were determined, and heat capacities were measured in the temperature range from 283.

View Article and Find Full Text PDF

Scalable Fabrication of Light-Responsive Superhydrophobic Composite Phase Change Materials via Bionic-Engineered Wood for Solar-Thermal Energy Management.

Molecules

January 2025

Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, Yunnan International Joint Laboratory of Sustainable Polymers, The Higher Educational Key Laboratory for Phosphorus Chemical Engineering of Yunnan Province, Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China.

The growing demand for sustainable energy storage solutions has underscored the importance of phase change materials (PCMs) for thermal energy management. However, traditional PCMs are always inherently constrained by issues such as leakage, poor thermal conductivity, and lack of solar energy conversion capacity. Herein, a multifunctional composite phase change material (CPCM) is developed using a balsa-derived morphology genetic scaffold, engineered via bionic catechol surface chemistry.

View Article and Find Full Text PDF

HSP70 chaperones play pivotal roles in facilitating protein folding, refolding, and disaggregation through their binding and releasing activities. This intricate process is further supported by J-domain proteins (JDPs), also known as DNAJs or HSP40s, which can be categorized into classes A and B. In yeast, these classes are represented by Ydj1 and Sis1, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!