The electrophilic η(3)-H2SiRR' σ-complexes [PhBP(Ph)3]RuH(η(3)-H2SiRR') (RR' = MePh, 1a; Ph2, 1b; [PhBP(Ph)3](-) = [PhB(CH2PPh2)3](-)) are efficient catalysts (0.01-2.5 mol % loading) for the hydrosilation of ketones with PhMeSiH2, Ph2SiH2, or EtMe2SiH. An alkoxy complex [PhBP(Ph)3]Ru-OCHPh2 (4b) was observed (by (31)P{(1)H} NMR spectroscopy) as the catalyst resting state during hydrosilation of benzophenone with EtMe2SiH. A different catalyst resting state was observed for reactions using PhMeSiH2 or Ph2SiH2, and was identified as a silane σ-complex [PhBP(Ph)3]RuH[η(2)-H-SiRR'(OCHPh2)] (RR' = MePh, 5a; Ph2, 5b) using variable temperature multinuclear NMR spectroscopy (-80 to 20 °C). The hydrosilation of benzophenone with PhMeSiH2 and 1a was examined by (1)H NMR spectroscopy at -18 °C (in CD2Cl2), and this revealed that either 1a, 5a, or both 1a and 5a could be observed as resting states of the catalytic cycle, depending on the initial [PhMeSiH2]:[benzophenone] ratio. Kinetic studies revealed two possible expressions for the rate of product formation, depending on which catalyst resting state was present (rate = kobs[PhMeSiH2][5a] and rate = k'obs[benzophenone][1a]). Computational methods (DFT, b3pw91, 6-31G(d,p)/LANL2DZ) were used to determine a model catalytic cycle for the hydrosilation of acetone with PhMeSiH2. A key step in this mechanism involves coordination of acetone to the silicon center of 1a-DFT, which leads to insertion of the carbonyl group into an Si-H bond (that is part of a Ru-H-Si 3c-2e bond). This generates an intermediate analogous to 5a (5a-i-DFT), and the final product is displaced from 5a-i-DFT by an associative process involving PhMeSiH2.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja509073cDOI Listing

Publication Analysis

Top Keywords

nmr spectroscopy
12
catalyst resting
12
resting state
12
electrophilic η3-h2sirr'
8
rr' meph
8
meph ph2
8
phmesih2 ph2sih2
8
hydrosilation benzophenone
8
catalytic cycle
8
hydrosilation
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!