BK channel activators and their therapeutic perspectives.

Front Physiol

Acesion Pharma Copenhagen, Denmark ; H. Lundbeck A/S Copenhagen, Denmark.

Published: October 2014

The large conductance calcium- and voltage-activated K(+) channel (KCa1.1, BK, MaxiK) is ubiquitously expressed in the body, and holds the ability to integrate changes in intracellular calcium and membrane potential. This makes the BK channel an important negative feedback system linking increases in intracellular calcium to outward hyperpolarizing potassium currents. Consequently, the channel has many important physiological roles including regulation of smooth muscle tone, neurotransmitter release and neuronal excitability. Additionally, cardioprotective roles have been revealed in recent years. After a short introduction to the structure, function and regulation of BK channels, we review the small organic molecules activating BK channels and how these tool compounds have helped delineate the roles of BK channels in health and disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4191079PMC
http://dx.doi.org/10.3389/fphys.2014.00389DOI Listing

Publication Analysis

Top Keywords

intracellular calcium
8
channel
4
channel activators
4
activators therapeutic
4
therapeutic perspectives
4
perspectives large
4
large conductance
4
conductance calcium-
4
calcium- voltage-activated
4
voltage-activated channel
4

Similar Publications

CBD and the 5-HT1A receptor: A medicinal and pharmacological review.

Biochem Pharmacol

January 2025

Department of Biomedical Sciences, College of Medicine, University of Houton, Houston, TX, 77204, USA. Electronic address:

Cannabidiol (CBD), a phytocannabinoid, has emerged as a promising candidate for addressing a wide array of symptoms. It has the ability to bind multiple proteins and receptors, including 5-HT1AR, transient receptor potential vanilloid 1 (TRPV1), and cannabinoid receptors. However, CBD's pharmacodynamic interaction with 5-HT1AR and its medicinal outcomes are still debated.

View Article and Find Full Text PDF

Unveiling the susceptibility of nanosecond pulsed electric field on intracellular function in breast cancerous and normal cells using fluorescence imaging.

Biosens Bioelectron

January 2025

Department of Applied Chemistry and Institute of Molecular Science, National Yang Ming Chiao Tung University, 1001 Ta-Hsueh Rd., Hsinchu, 300093, Taiwan; Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, 1001 Ta-Hsueh Rd., Hsinchu, 300093, Taiwan. Electronic address:

Modulation in cellular function and cell death through electrostimulation of intracellular organelles with the application of 50 ns pulsed electric field (nsPEF) have been investigated in breast cancerous MCF7 and normal MCF10A cells by developing a three-dimensional microelectrode device integrated with a fluorescence microscope. The findings revealed that nsPEF induced distinct effects on intracellular functions and dynamics in MCF7 and MCF10A cells. MCF10A cells exhibited significantly higher survivability than MCF7 cells, with different modes of cell death observed between them.

View Article and Find Full Text PDF

Aims: Mutations in the cardiac ryanodine receptor (RyR2) are associated with catecholaminergic polymorphic ventricular tachycardia (CPVT). This study investigates the underlying molecular mechanisms for CPVT mutations within the RyR2 N-terminus domain (NTD).

Methods And Results: We consulted the high-resolution RyR2 structure in both open and closed configuration to identify mutations G357S/R407I and A77T, which lie within the NTD intra- and inter-subunit interface with the Core Solenoid (CSol), respectively.

View Article and Find Full Text PDF

Acute pancreatitis (AP) is an inflammatory disease of the pancreas and a complex process involving multiple factors, with mitochondrial damage playing a crucial role. Mitochondrial dysfunction is now considered a key driver in the development of AP. This dysfunction often presents as increased oxidative stress, altered membrane potential and permeability, and mitochondrial DNA damage and mutations.

View Article and Find Full Text PDF

Magnetotactic bacteria from diverse Pseudomonadota families biomineralize intracellular Ca-carbonate.

ISME J

January 2025

Université Aix-Marseille, CNRS, CEA, UMR7265 Institut de Biosciences and Biotechnologies d'Aix-Marseille, CEA Cadarache, F-13108 Saint-Paul-lez-Durance, France.

Intracellular calcium carbonate formation has long been associated with a single genus of giant Gammaproteobacteria, Achromatium. However, this biomineralization has recently received increasing attention after being observed in photosynthetic Cyanobacteriota and in two families of magnetotactic bacteria affiliated with the Alphaproteobacteria. In the latter group, bacteria form not only intracellular amorphous calcium carbonates into large inclusions that are refringent under the light microscope, but also intracellular ferrimagnetic crystals into organelles called magnetosomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!