Physics of icing and rational design of surfaces with extraordinary icephobicity.

Langmuir

Laboratory of Thermodynamics in Emerging Technologies, Mechanical and Process Engineering Department, ETH Zurich, 8092 Zurich, Switzerland.

Published: May 2015

Icing of surfaces is commonplace in nature and technology, affecting everyday life and sometimes causing catastrophic events. Understanding (and counteracting) surface icing brings with it significant scientific challenges that requires interdisciplinary knowledge from diverse scientific fields such as nucleation thermodynamics and heat transfer, fluid dynamics, surface chemistry, and surface nanoengineering. Here we discuss key aspects and findings related to the physics of ice formation on surfaces and show how such knowledge could be employed to rationally develop surfaces with extreme resistance to icing (extraordinary icephobicity). Although superhydrophobic surfaces with micro-, nano-, or (often biomimetic) hierarchical roughnesses have shown in laboratory settings (under certain conditions) excellent repellency and low adhesion to water down to temperatures near or below the freezing point, extreme icephobicity necessitates additional important functionalities. Other approaches, such as lubricant-impregnated surfaces, exhibit both advantages and serious limitations with respect to icing. In all, a clear path toward passive surfaces with extreme resistance to ice formation remains a challenge, but it is one well worth undertaking. Equally important to potential applications is scalable surface manufacturing and the ability of icephobic surfaces to perform reliably and sustainably outside the laboratory under adverse conditions. Surfaces should possess mechanical and chemical stability, and they should be thermally resilient. Such issues and related research directions are also addressed in this article.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la502586aDOI Listing

Publication Analysis

Top Keywords

surfaces
9
extraordinary icephobicity
8
ice formation
8
surfaces extreme
8
extreme resistance
8
physics icing
4
icing rational
4
rational design
4
design surfaces
4
surfaces extraordinary
4

Similar Publications

The emergence of self-propelling magnetic nanobots represents a significant advancement in the field of drug delivery. These magneto-nanobots offer precise control over drug targeting and possess the capability to navigate deep into tumor tissues, thereby addressing multiple challenges associated with conventional cancer therapies. Here, Fe-GSH-Protein-Dox, a novel self-propelling magnetic nanobot conjugated with a biocompatible protein surface and loaded with doxorubicin for the treatment of triple-negative breast cancer (TNBC), is reported.

View Article and Find Full Text PDF

During maritime operations, extreme events such as explosions, grounding, and seal failures can cause water ingress into lubricant compartments, forming oil-water emulsions that significantly affect the lubrication performance of ship stern bearings. Existing studies mainly focus on low water content, with limited exploration of the impact of high water content on lubrication performance. To address this gap, viscosity measurements of oil-water mixtures were conducted, and an emulsification viscosity equation applicable to varying water contents was derived.

View Article and Find Full Text PDF

The incident angle of seismic waves influences the dynamic response of rock slopes. However, the relationship between the back-slope effect in strong earthquake areas and the incident angle has not been well-explained. Based on the equivalent nodal force method and the viscoelastic artificial boundary theory, the oblique incidence of seismic P-wave and SV-wave are carried out in FLAC3D software.

View Article and Find Full Text PDF

Autonomous microgrids (ATMG), with green power sources, like solar and wind, require an efficient control scheme to secure frequency stability. The weather and locationally dependent behavior of the green power sources impact the system frequency imperfectly. This paper develops an intelligent, i.

View Article and Find Full Text PDF

This study aimed to evaluate the histological success of pulpotomy in primary molars using white mineral trioxide aggregate (WMTA) mixed with 2.25% sodium hypochlorite (NaOCl) gel and to evaluate in vitro its physical and chemical properties. The study had a clinical stage and an in-vitro stage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!