Cystine is formed from two molecules of the cysteine under oxidized conditions, but is reversibly converted to cysteine by reduction. Growth of Escherichia coli is retarded in the presence of excess cystine. Transcriptome analysis showed 11 up-regulated and 26 down-regulated genes upon exposure to excess cystine. The reporter assay confirmed regulation by cystine of the expression of one up-regulated membrane gene, yijE, and two down-regulated membrane genes, yhdT and yihN. In order to identify the as yet unidentified gene encoding cystine efflux transporter, the putative cystine efflux candidate, yijE gene, was over-expressed. Expression of the yijE gene suppressed the slow growth of E. coli in the presence of high concentration of extracellular cystine. In good agreement, the knock-out of yijE gene increased the sensibility to cystine. These observations altogether imply that the yijE gene is involved in response to cystine in E. coli.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/09168451.2014.972328 | DOI Listing |
Biosci Biotechnol Biochem
December 2015
a Department of Frontier Bioscience and Research Center for Micro-Nano Technology , Hosei University, Koganei , Japan.
Cystine is formed from two molecules of the cysteine under oxidized conditions, but is reversibly converted to cysteine by reduction. Growth of Escherichia coli is retarded in the presence of excess cystine. Transcriptome analysis showed 11 up-regulated and 26 down-regulated genes upon exposure to excess cystine.
View Article and Find Full Text PDFThe earlier published and new experimental data are summarized on the properties of the genes encoding the membrane proteins of the DMT family (RhtA (YbiF), EamA (YdeD), YijE, YddG, YedA, PecM, eukaryotic nucleoside phosphate sugar and hexose phosphate transporters), the RhtB/LysE family (RhtB, RhtC, LeuE, YahN, EamB (YfiK), ArgO (YggA), CmaU), as well as some other families (YicM, YdhC, YdeAB, YdhE (NorE)). These proteins are involved in the export of amino acids, purines, and other metabolites from the cell. The expression of most of the genes encoding these proteins is not induced by the substrates they transport but is controlled by the global regulation systems, such as the Lrp protein, and activated by the signal compounds involved in the intracellular communication.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!