A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The contribution of Gi/o protein to opioid antinociception in an oxaliplatin-induced neuropathy rat model. | LitMetric

Oxaliplatin is a chemotherapeutic agent that induces chronic refractory neuropathy. To determine whether opioids effectively relieve this chronic neuropathy, we investigated the efficacies of morphine, oxycodone, and fentanyl, and the mechanisms underlying opioid antinociception, in oxaliplatin-induced neuropathy in rats. Rats exhibited significant mechanical allodynia following 2 weeks of chronic oxaliplatin administration. Within the range of doses that did not induce sedation and/or muscle rigidity, morphine (3 mg/kg, subcutaneously, s.c.) and oxycodone (0.3-0.56 mg/kg, s.c.) completely reversed oxaliplatin-induced mechanical allodynia, whereas fentanyl (0.017-0.03 mg/kg, s.c.) showed partial antinociception. The antinociception of the optimal doses of morphine and oxycodone were completely inhibited by pertussis toxin (PTX; 0.5 μg/rat, i.c.v.), a Gi/o protein inhibitor, while the partial effect of fentanyl was not affected in the oxaliplatin model. In the [(35)S]-GTPγS binding assay, activation of μ-opioid receptor by fentanyl, but not by morphine or oxycodone, in the mediodorsal thalamus was significantly reduced in oxaliplatin-treated rats. These results indicate that the lower antinociceptive potency of fentanyl in the oxaliplatin model might in part result from the loss of PTX-sensitive Gi/o protein activation, and the degree of Gi/o protein activation might be related to the potency of antinociception by opioids in this model.

Download full-text PDF

Source
http://dx.doi.org/10.1254/jphs.14133fpDOI Listing

Publication Analysis

Top Keywords

gi/o protein
16
morphine oxycodone
12
opioid antinociception
8
antinociception oxaliplatin-induced
8
oxaliplatin-induced neuropathy
8
mechanical allodynia
8
fentanyl oxaliplatin
8
oxaliplatin model
8
protein activation
8
antinociception
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!