In LaTiO₃/SrTiO₃ and LaAlO₃/SrTiO₃ heterostructures, the bending of the SrTiO₃ conduction band at the interface forms a quantum well that contains a superconducting two-dimensional electron gas (2-DEG). Its carrier density and electronic properties, such as superconductivity and Rashba spin-orbit coupling can be controlled by electrostatic gating. In this article we show that the Fermi energy lies intrinsically near the top of the quantum well. Beyond a filling threshold, electrons added by electrostatic gating escape from the well, hence limiting the possibility to reach a highly-doped regime. This leads to an irreversible doping regime where all the electronic properties of the 2-DEG, such as its resistivity and its superconducting transition temperature, saturate. The escape mechanism can be described by the simple analytical model we propose.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4209450 | PMC |
http://dx.doi.org/10.1038/srep06788 | DOI Listing |
Chem Sci
January 2025
Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University Changsha 410083 P. R. China
The layer-stacking mode of a two-dimensional (2D) material plays a dominant role either in its topology or properties, but remains challenging to control. Herein, we developed alkali-metal ion-regulating synthetic control on the stacking structure of a vinylene-linked covalent triazine framework (termed spc-CTF) for improving hydrogen peroxide (HO) photoproduction. Upon the catalysis of EtONa in Knoevenagel polycondensation, a typical eclipsed stacking mode (spc-CTF-4@AA) was built, while a staggered one (spc-CTF-4@AB) was constructed using LiOH.
View Article and Find Full Text PDFACS Nano
January 2025
Center of Free Electron Laser & High Magnetic Field, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China.
Recently, two-dimensional (2D) van der Waals (vdW) magnetic materials have emerged as a promising platform for studying exchange bias (EB) phenomena due to their atomically flat surfaces and highly versatile stacking configurations. Although complex spin configurations between 2D vdW interfaces introduce challenges in understanding their underlying mechanisms, they can offer more possibilities in realizing effective manipulations. In this study, we present a spin-orthogonal arranged 2D FeGaTe (FGaT)/CrSBr vdW heterostructure, realizing the EB effect with the bias field as large as 1730 Oe at 2 K.
View Article and Find Full Text PDFJ Phys Condens Matter
January 2025
Escuela de Artes Plásticas y Audiovisuales, Benemerita Universidad Autonoma de Puebla, Av. San Claudio y Blvd. 18 Sur, Edificios 1IF1, 2IF1 y 3IF1, Ciudad Universitaria, Colonia San Manuel, Puebla, Puebla, 72570, MEXICO.
Transition metal nitrides are well-known 3D superconductor materials. However, there is a lack of knowledge related to their two-dimensional (2D) counterparts, which have several potential technological applications. In this work, we predict, using an evolutionary algorithm coupled with a first-principles approach, a set of novel 2D superconductive structures based on tungsten nitride.
View Article and Find Full Text PDFNat Commun
January 2025
School of Physical Science and Technology, Ningbo University, Ningbo, China.
The two-dimensional (2D) "sandwich" structure composed of a cation plane located between two anion planes, such as anion-rich CrI, VS, VSe, and MnSe, possesses exotic magnetic and electronic structural properties and is expected to be a typical base for next-generation microelectronic, magnetic, and spintronic devices. However, only a few 2D anion-rich "sandwich" materials have been experimentally discovered and fabricated, as they are vastly limited by their conventional stoichiometric ratios and structural stability under ambient conditions. Here, we report a 2D anion-rich NaCl crystal with sandwiched structure confined within graphene oxide membranes with positive surface potential.
View Article and Find Full Text PDFNano Lett
January 2025
Institute for Experimental and Applied Physics, University of Regensburg, 93040 Regensburg, Germany.
Understanding and controlling the electronic properties of two-dimensional materials are crucial for their potential applications in nano- and optoelectronics. Monolayer transition metal dichalcogenides have garnered significant interest due to their strong light-matter interaction and extreme sensitivity of the band structure to the presence of photogenerated electron-hole pairs. In this study, we investigate the transient electronic structure of monolayer WS on a graphene substrate after resonant excitation of the A-exciton using time- and angle-resolved photoemission spectroscopy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!