A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Model-referenced cardiovascular circulatory simulator: construction and control. | LitMetric

Model-referenced cardiovascular circulatory simulator: construction and control.

Artif Organs

Department of Mechanical Engineering, Sejong University, Seoul, Korea.

Published: April 2015

Physiological feasibility is the most important requirement for cardiovascular circulatory simulators (CCSs). However, previous simulators have been validated by a comparison with specific human data sets, which are valid only for very limited conditions, and so it is difficult to validate the fidelity of a CCS for various body conditions. To overcome this critical limitation, we propose a model-referenced CCS that reproduces the behavior of an electrical-analog model of the cardiovascular circulatory system, for which physiological fidelity is well established over a wide range. In this study, the electrical-analog reference model was realized in the hardware simulator using fluidic element modeling and by the feedback control of a mock ventricle. The proposed simulator showed a good match with the reference model behavior, and its physiological validity was thereby verified. The proposed simulator is able to show responsiveness to various body conditions as well. To the best of the author's knowledge, this is the first report of an in vitro CCS verified to be consistent with reference model behavior.

Download full-text PDF

Source
http://dx.doi.org/10.1111/aor.12378DOI Listing

Publication Analysis

Top Keywords

cardiovascular circulatory
12
reference model
12
body conditions
8
proposed simulator
8
model behavior
8
model-referenced cardiovascular
4
simulator
4
circulatory simulator
4
simulator construction
4
construction control
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!