Vertebrate vision relies on two types of photoreceptors, rods and cones, which signal increments in light intensity with graded hyperpolarizations. Rods operate in the lower range of light intensities while cones operate at brighter intensities. The receptive fields of both photoreceptors exhibit antagonistic center-surround organization. Here we show that at bright light levels, mouse rods act as relay cells for cone-driven horizontal cell-mediated surround inhibition. In response to large, bright stimuli that activate their surrounds, rods depolarize. Rod depolarization increases with stimulus size, and its action spectrum matches that of cones. Rod responses at high light levels are abolished in mice with nonfunctional cones and when horizontal cells are reversibly inactivated. Rod depolarization is conveyed to the inner retina via postsynaptic circuit elements, namely the rod bipolar cells. Our results show that the retinal circuitry repurposes rods, when they are not directly sensing light, to relay cone-driven surround inhibition.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nn.3852DOI Listing

Publication Analysis

Top Keywords

surround inhibition
12
relay cells
8
cells cone-driven
8
cone-driven horizontal
8
horizontal cell-mediated
8
cell-mediated surround
8
light levels
8
rod depolarization
8
rods
6
light
5

Similar Publications

Obesity is an established risk factor for breast cancer development and poor prognosis. The adipose environment surrounding breast tumors, which is inflamed in obesity, has been implicated in tumor progression, and TREM2, a transmembrane receptor expressed on macrophages in adipose tissue and tumors, is an emerging therapeutic target for cancer. A better understanding of the mechanisms for the obesity-breast cancer association and the potential benefits of weight loss could help inform treatment strategies.

View Article and Find Full Text PDF

Study of an arginine- and tryptophan-rich antimicrobial peptide in peri-implantitis.

Front Bioeng Biotechnol

January 2025

Department of Periodontology, School and Hospital of Stomotology, Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University, Tianjin, China.

The combination of hydrophilic arginine residues and hydrophobic tryptophan residues is considered to be the first choice for designing short-chain antimicrobial peptides (AMPs) due to their potent antibacterial activity. Based on this, we designed an arginine- and tryptophan-rich short peptide, VR-12. Peri-implantitis is a significant microbial inflammatory disorder characterized by the inflammation of the soft tissues surrounding an implant, which ultimately leads to the progressive resorption of the alveolar bone.

View Article and Find Full Text PDF

When cellular ageing is accelerated by various extrinsic/endogenous stimuli, regenerative function deteriorates, and enriched secretomes, such as the senescence-associated secretory phenotype (SASP), contribute to chronic inflammation and cause matrix degeneration. SASPs from senescent fibroblasts exacerbate cellular senescence via autocrine signalling and also accelerate skin ageing through the induction of neighbouring cell senescence via paracrine signalling. The interaction between dermis fibroblasts and their neighbours, adipose-derived stem cells (ADSCs) in the hypodermis, which lies deep in the dermis, is a potential target for skin ageing.

View Article and Find Full Text PDF

The extensive mining of bastnasite (CeFCO) has caused severe pollution of lanthanum (La), cerium (Ce), and fluorine (F) in the surrounding farmland soil, threatening the safety of the soil-plant system. However, the stress effects of the interaction among these three elements on the tolerance and accumulation traits of Brassica chinensis L. (B.

View Article and Find Full Text PDF

Polarity and migration of cranial and cardiac neural crest cells: underlying molecular mechanisms and disease implications.

Front Cell Dev Biol

January 2025

Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.

The Neural Crest cells are multipotent progenitor cells formed at the neural plate border that differentiate and give rise to a wide range of cell types and organs. Directional migration of NC cells and their correct positioning at target sites are essential during embryonic development, and defects in these processes results in congenital diseases. The NC migration begins with the epithelial-mesenchymal transition and extracellular matrix remodeling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!