Motivation: Self-organizing maps (SOMs) are readily available bioinformatics methods for clustering and visualizing high-dimensional data, provided that such biological information is previously transformed to fixed-size, metric-based vectors. To increase the usefulness of SOM-based approaches for the analysis of genomic sequence data, novel representation methods are required that automatically and objectively transform aligned nucleotide sequences into numeric vectors, dealing with both nucleotide ambiguity and gaps derived from sequence alignment.
Results: Six different codification variants based on Euclidean space, just like SOM processing, have been tested using two SOM models: the classical Kohonen's SOM and growing cell structures. They have been applied to two different sets of sequences: 32 sequences of small sub-unit ribosomal RNA from organisms belonging to the three domains of life, and 44 sequences of the reverse transcriptase region of the pol gene of human immunodeficiency virus type 1 belonging to different groups and sub-types. Our results show that the most important factor affecting the accuracy of sequence clustering is the assignment of an extra weight to the presence of alignment-derived gaps. Although each of the codification variants shows a different level of taxonomic consistency, the results are in agreement with sequence-based phylogenetic reconstructions and anticipate a broad applicability of this codification method.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/bioinformatics/btu708 | DOI Listing |
J Am Med Inform Assoc
December 2024
AI for Health Institute, Washington University in St Louis, St Louis, MO 63130, United States.
Objective: Early detection of surgical complications allows for timely therapy and proactive risk mitigation. Machine learning (ML) can be leveraged to identify and predict patient risks for postoperative complications. We developed and validated the effectiveness of predicting postoperative complications using a novel surgical Variational Autoencoder (surgVAE) that uncovers intrinsic patterns via cross-task and cross-cohort presentation learning.
View Article and Find Full Text PDFSci Rep
December 2024
Translational Oncogenomics and Bioinformatics Lab, Center for Medical Biotechnology, VIB-UGent & CRIG, Technologiepark-Zwijnaarde 75, 9052, Ghent, Belgium.
Esophageal adenocarcinoma (EAC) is an aggressive cancer characterized by a high risk of relapse post-surgery. Current follow-up methods (serum carcinoembryonic antigen detection and PET-CT) lack sensitivity and reliability, necessitating a novel approach. Analyzing cell-free DNA (cfDNA) from blood plasma emerges as a promising avenue.
View Article and Find Full Text PDFCommun Biol
December 2024
College of Computer Science and Technology, Ocean University of China, Qingdao, China.
Understanding the function of proteins is of great significance for revealing disease pathogenesis and discovering new targets. Benefiting from the explosive growth of the protein universal, deep learning has been applied to accelerate the protein annotation cycle from different biological modalities. However, most existing deep learning-based methods not only fail to effectively fuse different biological modalities, resulting in low-quality protein representations, but also suffer from the convergence of suboptimal solution caused by sparse label representations.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Electrical, Electronic, and Information Engineering "Guglielmo Marconi", Università di Bologna, 40126, Bologna, Italy.
Spiking Neural Networks (SNNs) stand as the third generation of Artificial Neural Networks (ANNs), mirroring the functionality of the mammalian brain more closely than their predecessors. Their computational units, spiking neurons, characterized by Ordinary Differential Equations (ODEs), allow for dynamic system representation, with spikes serving as the medium for asynchronous communication among neurons. Due to their inherent ability to capture input dynamics, SNNs hold great promise for deep networks in Reinforcement Learning (RL) tasks.
View Article and Find Full Text PDFJ Imaging
December 2024
Department of Computer Science, Kiel University, 24118 Kiel, Germany.
Due to recent advances in 3D reconstruction from RGB images, it is now possible to create photorealistic representations of real-world scenes that only require minutes to be reconstructed and can be rendered in real time. In particular, 3D Gaussian splatting shows promising results, outperforming preceding reconstruction methods while simultaneously reducing the overall computational requirements. The main success of 3D Gaussian splatting relies on the efficient use of a differentiable rasterizer to render the Gaussian scene representation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!