Ca(2+)-dependent regulation of fusion pore dilation and closure is a key mechanism determining the output of cellular secretion. We have recently described 'fusion-activated' Ca(2+) entry (FACE) following exocytosis of lamellar bodies in alveolar type II cells. FACE regulates fusion pore expansion and facilitates secretion. However, the mechanisms linking this locally restricted Ca(2+) signal and fusion pore expansion were still elusive. Here, we demonstrate that synaptotagmin-7 (Syt7) is expressed on lamellar bodies and links FACE and fusion pore dilation. We directly assessed dynamic changes in fusion pore diameters by analysing diffusion of fluorophores across fusion pores. Expressing wild-type Syt7 or a mutant Syt7 with impaired Ca(2+)-binding to the C2 domains revealed that binding of Ca(2+) to the C2A domain facilitates FACE-induced pore dilation, probably by inhibiting translocation of complexin-2 to fused vesicles. However, the C2A domain hampered Ca(2+)-dependent exocytosis of lamellar bodies. These findings support the hypothesis that Syt7 modulates fusion pore expansion in large secretory organelles and extend our picture that lamellar bodies contain the necessary molecular inventory to facilitate secretion during the exocytic post-fusion phase. Moreover, regulating Syt7 levels on lamellar bodies appears to be essential in order that exocytosis is not impeded during the pre-fusion phase.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4265738 | PMC |
http://dx.doi.org/10.1242/jcs.153742 | DOI Listing |
Int J Mol Sci
January 2025
Research Institute for Systems Biology and Medicine (RISBM), Nauchnyi proezd 18, 117246 Moscow, Russia.
SARS-CoV-2 viral entry requires membrane fusion, which is facilitated by the fusion peptides within its spike protein. These predominantly hydrophobic peptides insert into target membranes; however, their precise mechanistic role in membrane fusion remains incompletely understood. Here, we investigate how FP1 (SFIEDLLFNKVTLADAGFIK), the N-terminal fusion peptide, modulates membrane stability and barrier function across various model membrane systems.
View Article and Find Full Text PDFCurr Issues Mol Biol
January 2025
School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
Mitochondrial homeostasis is crucial for maintaining cellular energy production and preventing oxidative stress, which is essential for overall cellular function and longevity. Mitochondrial damage and dysfunction often occur concomitantly in myocardial ischemia-reperfusion injury (MIRI). Notoginsenoside R1 (NGR1), a unique saponin from the traditional Chinese medicine Panax notoginseng, has been shown to alleviate MIRI in previous studies, though its precise mechanism remains unclear.
View Article and Find Full Text PDFGels
January 2025
Department of Polymer Nano Science & Technology and Polymer Materials Fusion Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Jeonbuk, Republic of Korea.
Articular cartilage faces challenges in self-repair due to the lack of blood vessels and limited chondrocyte concentration. Polydeoxyribonucleotide (PDRN) shows promise for promoting chondrocyte growth and cartilage regeneration, but its delivery has been limited to injections. Continuous PDRN delivery is crucial for effective cartilage regeneration.
View Article and Find Full Text PDFBiomater Adv
January 2025
Hangzhou Dianzi University, Automation College, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Medical Information and Biological 3D Printing, Hangzhou, Zhejiang, China. Electronic address:
In three-dimensional (3D) bioprinting, the internal channel network is vital for nutrient and oxygen transport, crucial for cell survival and tissue construction. However, bioinks' poor mechanical properties hinder precise control over these networks. Advancements in 3D printing strategies, structure characterization, and deformation monitoring can improve hydrogel scaffolds with interconnected channels.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Institute of Physical Chemistry, University of Göttingen, Göttingen, Germany.
We present two innovative approaches to investigate the dynamics of membrane fusion and the strength of protein-membrane interactions. The first approach employs pore-spanning membranes (PSMs), which allow for the observation of protein-assisted fusion processes. The second approach utilizes colloidal probe microscopy with membrane-coated probes with reconstituted proteins.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!