Full-field X-ray reflection microscopy of epitaxial thin-films.

J Synchrotron Radiat

Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL 60439, USA.

Published: November 2014

Novel X-ray imaging of structural domains in a ferroelectric epitaxial thin film using diffraction contrast is presented. The full-field hard X-ray microscope uses the surface scattering signal, in a reflectivity or diffraction experiment, to spatially resolve the local structure with 70 nm lateral spatial resolution and sub-nanometer height sensitivity. Sub-second X-ray exposures can be used to acquire a 14 µm × 14 µm image with an effective pixel size of 20 nm on the sample. The optical configuration and various engineering considerations that are necessary to achieve optimal imaging resolution and contrast in this type of microscopy are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1107/S1600577514016555DOI Listing

Publication Analysis

Top Keywords

full-field x-ray
4
x-ray reflection
4
reflection microscopy
4
microscopy epitaxial
4
epitaxial thin-films
4
thin-films novel
4
novel x-ray
4
x-ray imaging
4
imaging structural
4
structural domains
4

Similar Publications

Introduction: Annual screening for hydroxychloroquine (HCQ) retinopathy is recommended, and electroretinography (ERG) is considered a gold-standard test, but there are screening shortfalls and standard ERG is burdensome and has limited availability. Newer, portable ERG devices using skin-based electrodes may increase screening capacity but need validation. This study aims to determine initial device accuracies and feasibility of further research.

View Article and Find Full Text PDF

Purpose: Digital breast tomosynthesis (DBT) has been introduced more than a decade ago. Studies have shown higher breast cancer detection rates and lower recall rates, and it has become an established imaging method in diagnostic settings. However, full-field digital mammography (FFDM) remains the most common imaging modality for screening in many countries, as it delivers high-resolution planar images of the breast.

View Article and Find Full Text PDF

X-ray fluorescence (XRF) is widely used to analyze elemental distributions in samples. Micro-XRF (µ-XRF), the most basic conventional XRF technique, offers good spatial resolution through precise 2D scanning with a micrometre-sized X-ray source. Recently, synchrotron based XRF analysis platforms have achieved nano-XRF with highly focused X-rays using polycapillary optics or mirrors, leveraging the excellent coherence of synchrotron radiation.

View Article and Find Full Text PDF

 Synthesized mammography (SM) refers to two-dimensional (2D) images derived from the digital breast tomosynthesis (DBT) data. It can reduce the radiation dose and scan duration when compared with conventional full-field digital mammography (FFDM) plus tomosynthesis.  To compare the diagnostic performance of 2D FFDM with synthetic mammograms obtained from DBT in a diagnostic population.

View Article and Find Full Text PDF

Introduction: Research concerning artificial intelligence in breast cancer detection has primarily focused on population screening. However, Hong Kong lacks a population-based screening programme. This study aimed to evaluate the potential of artificial intelligence-based computer-assisted diagnosis (AI-CAD) program in symptomatic clinics in Hong Kong and analyse the impact of radio-pathological breast cancer phenotype on AI-CAD performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!