Nonparametric kernel learning (NPKL) is a flexible approach to learn the kernel matrix directly without assuming any parametric form. It can be naturally formulated as a semidefinite program (SDP), which, however, is not very scalable. To address this problem, we propose the combined use of low-rank approximation and block coordinate descent (BCD). Low-rank approximation avoids the expensive positive semidefinite constraint in the SDP by replacing the kernel matrix variable with V(T)V, where V is a low-rank matrix. The resultant nonlinear optimization problem is then solved by BCD, which optimizes each column of V sequentially. It can be shown that the proposed algorithm has nice convergence properties and low computational complexities. Experiments on a number of real-world data sets show that the proposed algorithm outperforms state-of-the-art NPKL solvers.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNNLS.2014.2361159DOI Listing

Publication Analysis

Top Keywords

kernel learning
8
block coordinate
8
coordinate descent
8
kernel matrix
8
low-rank approximation
8
proposed algorithm
8
scalable nonparametric
4
low-rank
4
nonparametric low-rank
4
kernel
4

Similar Publications

Context: Accurate prognosis prediction for cancer patients in palliative care is critical for clinical decision-making and personalized care. Traditional statistical models have been complemented by machine learning approaches; however, their comparative effectiveness remains underexplored.

Objectives: To assess the prognostic accuracy of statistical and machine learning models in predicting 30-day survival in patients with advanced cancer using objective data, such as the result of the blood test.

View Article and Find Full Text PDF

CTCNet: a fine-grained classification network for fluorescence images of circulating tumor cells.

Med Biol Eng Comput

January 2025

Anhui BioX-Vision Biological Technology Co., Ltd, Hefei, 230031, Anhui, China.

The identification and categorization of circulating tumor cells (CTCs) in peripheral blood are imperative for advancing cancer diagnostics and prognostics. The intricacy of various CTCs subtypes, coupled with the difficulty in developing exhaustive datasets, has impeded progress in this specialized domain. To date, no methods have been dedicated exclusively to overcoming the classification challenges of CTCs.

View Article and Find Full Text PDF

Objective: The purpose of the current study was to develop and validate a biomarker-based prediction model for metastasis in patients with colorectal cancer (CRC).

Methods: Two datasets, GSE68468 and GSE41568, were retrieved from the Gene Expression Omnibus (GEO) database. In the GSE68468 dataset, key biomarkers were identified through a screening process involving differential expression analysis, redundancy analysis, and recursive feature elimination technique.

View Article and Find Full Text PDF

Seg-SkiNet: adaptive deformable fusion convolutional network for skin lesion segmentation.

Quant Imaging Med Surg

January 2025

School of Computer and Control Engineering, Yantai University, Yantai, China.

Background: Skin lesion segmentation plays a significant role in skin cancer diagnosis. However, due to the complex shapes, varying sizes, and different color depths, precise segmentation of skin lesions is a challenging task. Therefore, the aim of this study was to design a customized deep learning (DL) model for the precise segmentation of skin lesions, particularly for complex shapes and small target lesions.

View Article and Find Full Text PDF

Background: Intracerebral amyloid β (Aβ) accumulation is considered the initial observable event in the pathological process of Alzheimer's disease (AD). Efficient screening for amyloid pathology is critical for identifying patients for early treatment. This study developed machine learning models to classify positron emission tomography (PET) Aβ-positivity in participants with preclinical and prodromal AD using data accessible to primary care physicians.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!