This research examined virtual-human interactions as a new form of simulated contact between members of groups in conflict. A virtual human representing an outgroup member (a Palestinian) interacted with 60 Jewish Israeli participants in an experimental study. We manipulated postural mimicry by the virtual interaction partner during a conversation about a sensitive conflict issue. Mimicry increased empathy toward the Palestinians, irrespective of participants' feelings toward the Palestinians prior to the experiment. Further, mimicked participants who reported a priori negative feelings toward Palestinians expressed more sympathy toward their Palestinian virtual interaction partner, rated themselves as closer to him, and perceived the interaction as more harmonious compared to participants in a counter-mimicry condition. The results underscore the impact of mimicry on intergroup interactions, especially on individuals who harbor negative feelings toward the outgroup. The use of virtual-human interactions in obtaining this effect reveals the still widely unexplored potential of technology-enhanced conflict resolution.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4267545PMC
http://dx.doi.org/10.1089/cyber.2014.0213DOI Listing

Publication Analysis

Top Keywords

simulated contact
8
virtual-human interactions
8
virtual interaction
8
interaction partner
8
feelings palestinians
8
negative feelings
8
virtual
5
virtual peacemakers
4
mimicry
4
peacemakers mimicry
4

Similar Publications

Effective surgical planning is crucial for maximizing patient outcomes following complex orthopedic procedures such as proximal femoral osteotomy. In silico simulations can be used to assess how surgical variations in proximal femur geometry, such as femur neck-shaft and anteversion angles, affect postoperative system mechanics. This study investigated the sensitivity of femur mechanics to postoperative neck-shaft angles, anteversion angles, and osteotomy contact areas using patient-specific finite element analysis informed by neuromusculoskeletal models.

View Article and Find Full Text PDF

Objective: Titanium surface modifications improve osseointegration in dental and orthopedic implants. However, soft tissue cells can also reach the implant surface in immediate loading protocols. While previous research focused on osteogenic cells, the early response of soft tissue cells still needs to be better understood.

View Article and Find Full Text PDF

Introduction: Individuals with anterior cruciate ligament reconstruction (ACLR) often walk with a less dynamic vertical ground reaction force (vGRF), exemplified by a reduced first peak vGRF and elevated midstance vGRF compared to uninjured controls. However, the mechanism by which altered limb loading affects actual tibial plateau contact forces during walking remains unclear.

Methods: Our purpose was to use musculoskeletal simulation to evaluate the effects of first peak vertical ground reaction force (vGRF) biofeedback on bilateral tibiofemoral contact forces relevant to the development of post-traumatic osteoarthritis (OA) in 20 individuals with ACLR.

View Article and Find Full Text PDF

For the purpose of assessing image quality and calculating patient X-ray dosage in radiology, computed tomography (CT), fluoroscopy, mammography, and other fields, it is necessary to have prior knowledge of the X-ray energy spectrum. The main components of an X-ray tube are an electron filament, also known as the cathode, and an anode, which is often made of tungsten or rubidium and angled at a certain angle. At the point where the electrons generated by the cathode and the anode make contact, a spectrum of X-rays with energies spanning from zero to the maximum energy value of the released electrons is created.

View Article and Find Full Text PDF

Strain sensing fabrics are able to sense the deformation of the outside world, bringing more accurate and real-time monitoring and feedback to users. However, due to the lack of clear sensing mechanism for high sensitivity and high linearity carbon matrix composites, the preparation of high performance strain sensing fabric weaving is still a major challenge. Here, an elastic polyurethane(PU)-based conductive fabric(GCPU) with high sensitivity, high linearity and good hydrophobicity is prepared by a novel synergistic conductive network strategy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!