The hypothalamic A11 region has been identified in several species including rats, mice, cats, monkeys, zebrafish, and humans as the primary source of descending dopamine (DA) to the spinal cord. It has been implicated in the control of pain, modulation of the spinal locomotor network, restless leg syndrome, and cataplexy, yet the A11 cell group remains an understudied dopaminergic (DAergic) nucleus within the brain. It is unclear whether A11 neurons in the mouse contain the full complement of enzymes consistent with traditional DA neuronal phenotypes. Given the abundance of mouse genetic models and tools available to interrogate specific neural circuits and behavior, it is critical first to fully understand the phenotype of A11 cells. We provide evidence that, in addition to tyrosine hydroxylase (TH) that synthesizes L-DOPA, neurons within the A11 region of the mouse contain aromatic L-amino acid decarboxylase (AADC), the enzyme that converts L-DOPA to dopamine. Furthermore, we show that the A11 neurons contain vesicular monoamine transporter 2 (VMAT2), which is necessary for packaging DA into vesicles. On the contrary, A11 neurons in the mouse lack the dopamine transporter (DAT). In conclusion, our data suggest that A11 neurons are DAergic. The lack of DAT, and therefore the lack of a DA reuptake mechanism, points to a longer time of action compared to typical DA neurons.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4208762 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0109636 | PLOS |
Neuropathology
January 2025
Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan.
The degeneration of pyramidal tracts has been reported in frontotemporal lobar degeneration with TDP-43 (TAR DNA-binding protein 43) pathology (FTLD-TDP) type C. Herein, we examined the detailed pathology of the primary motor area and pyramidal tracts in the central nervous system in four autopsy cases of FTLD-TDP type C, all of which were diagnosed by neuropathological, biochemical, and genomic analyses. Three patients showed right dominant atrophy of the frontal and temporal lobes, while the other patient showed left dominant atrophy.
View Article and Find Full Text PDFNeurobiol Dis
January 2025
Department of Biomedicine & Danish Research Institute of Translational Neuroscience - DANDRITE, Aarhus University, 8000 Aarhus, Denmark. Electronic address:
The underlying cause of neuronal loss in Parkinson's disease (PD) remains unknown, but evidence implicates neuroinflammation in PD pathobiology. The pro-inflammatory cytokine soluble tumor necrosis factor (TNF) seems to play an important role and thus has been proposed as a therapeutic target for modulation of the neuroinflammatory processes in PD. In this regard, dominant-negative TNF (DN-TNF) agents are promising antagonists that selectively inhibit soluble TNF signaling, while preserving the beneficial effects of transmembrane TNF.
View Article and Find Full Text PDFFront Comput Neurosci
November 2024
Department of Physics, University of California, San Diego, La Jolla, CA, United States.
The nucleus HVC within the avian song system produces crystalized instructions which lead to precise, learned vocalization in zebra finches (). This paper proposes a model of the HVC neural network based on the physiological properties of individual HVC neurons, their synaptic interactions calibrated by experimental measurements, as well as the synaptic signal into this region which triggers song production. This neural network model comprises of two major neural populations in this area: neurons projecting to the nucleus RA and interneurons.
View Article and Find Full Text PDFbioRxiv
November 2024
Department of Metabolism and Systems Science, University of Birmingham, Birmingham, UK.
The central melanocortin system links nutrition to energy expenditure, with melanocortin-4 receptor (MC4R) controlling appetite and food intake, and MC3R regulating timing of sexual maturation, rate of linear growth and lean mass accumulation. Melanocortin-2 receptor accessory protein-2 (MRAP2) is a single transmembrane protein that interacts with MC4R to potentiate it's signalling, and human mutations in MRAP2 cause obesity. Previous studies have been unable to consistently show whether MRAP2 affects MC3R activity.
View Article and Find Full Text PDFJ Neurosci Res
November 2024
Department of Mechanical and Industrial Engineering, The University of Illinois at Chicago, Chicago, Illinois, USA.
Dopamine (DA) signaling is evoked by both food and drugs that humans come to abuse. Moreover, physiological state (e.g.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!