Transcriptional repressor Tbx3 is required for the hormone-sensing cell lineage in mammary epithelium.

PLoS One

Department of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore, Singapore; Program in Cancer & Stem Cell Biology, Duke-NUS Graduate Medical School Singapore, Singapore, Singapore; Department of Physiology, National University of Singapore, Singapore, Singapore.

Published: June 2015

AI Article Synopsis

  • * In adult mice, Tbx3 is primarily expressed in hormone receptor-positive luminal cells, crucial for mammary epithelial identity, and its absence affects the formation of these cells.
  • * This study highlights the cell type-specific targets of Tbx3, revealing its vital role in generating hormone-sensing cells in the mammary gland.

Article Abstract

The transcriptional repressor Tbx3 is involved in lineage specification in several tissues during embryonic development. Germ-line mutations in the Tbx3 gene give rise to Ulnar-Mammary Syndrome (comprising reduced breast development) and Tbx3 is required for mammary epithelial cell identity in the embryo. Notably Tbx3 has been implicated in breast cancer, which develops in adult mammary epithelium, but the role of Tbx3 in distinct cell types of the adult mammary gland has not yet been characterized. Using a fluorescent reporter knock-in mouse, we show that in adult virgin mice Tbx3 is highly expressed in luminal cells that express hormone receptors, and not in luminal cells of the alveolar lineage (cells primed for milk production). Flow cytometry identified Tbx3 expression already in progenitor cells of the hormone-sensing lineage and co-immunofluorescence confirmed a strict correlation between estrogen receptor (ER) and Tbx3 expression in situ. Using in vivo reconstitution assays we demonstrate that Tbx3 is functionally relevant for this lineage because knockdown of Tbx3 in primary mammary epithelial cells prevented the formation of ER+ cells, but not luminal ER- or basal cells. Interestingly, genes that are repressed by Tbx3 in other cell types, such as E-cadherin, are not repressed in hormone-sensing cells, highlighting that transcriptional targets of Tbx3 are cell type specific. In summary, we provide the first analysis of Tbx3 expression in the adult mammary gland at a single cell level and show that Tbx3 is important for the generation of hormone-sensing cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4208772PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0110191PLOS

Publication Analysis

Top Keywords

tbx3
15
adult mammary
12
tbx3 expression
12
cells
9
transcriptional repressor
8
repressor tbx3
8
tbx3 required
8
mammary epithelium
8
mammary epithelial
8
cell types
8

Similar Publications

TBX3 is Essential for Zygotic Genome Activation and Embryonic Development in Pigs.

Microsc Microanal

January 2025

Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea.

The pluripotency-related T-box family transcription factor TBX3 maintains mESC self-renewal and plays a key role in the development of several tissues, including the heart, mammary glands, limbs, and lungs. However, the role of TBX3 during porcine preimplantation embryo development remains unclear. In our research, TBX3 was knocked down by injecting dsRNA to explore the function of TBX3.

View Article and Find Full Text PDF

A family with an atypical presentation of TBX3-related disorder.

Eur J Med Genet

January 2025

Genetics Institute, Rambam Health Care Campus, Haifa, Israel; The Ruth and Bruce Rappaport Faculty of Medicine, The Technion, Haifa, Israel. Electronic address:

Background: Ulnar mammary syndrome (UMS) is an autosomal dominant disorder caused by heterozygous pathogenic variants in the T-box transcription factor 3 (TBX3) gene. The phenotype is classically characterized by upper limb defects and apocrine/mammary gland hypoplasia. Endocrine abnormalities include hypogonadotropic hypogonadism (HH), partial growth hormone deficiency and dysmorphic features, while ectopic pituitary gland and various congenital anomalies have also been described.

View Article and Find Full Text PDF

Longitudinal genomic profiling using liquid biopsies in metastatic nonsquamous NSCLC following first line immunotherapy.

NPJ Precis Oncol

January 2025

Clinical Pharmacology and Quantitative Science, Genmab Inc, Princeton, NJ, USA.

Tumor genomic profiling is often limited to one or two timepoints due to the invasiveness of tissue biopsies, but longitudinal profiling may provide deeper clinical insights. Using ctDNA data from IMpower150 study, we examined genetic changes in metastatic non-squamous NSCLC post-first-line immunotherapy. Mutations were most frequently detected in TP53, KRAS, SPTA1, FAT3, and LRP1B at baseline and during treatment.

View Article and Find Full Text PDF

Expression and Analysis of Gene in the Skin from Three Locations on Dun Mongolian Bider Horse.

Genes (Basel)

December 2024

Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China.

Background/objectives: The Mongolian horse, one of the oldest and most genetically diverse breeds, exhibits a wide variety of coat colors and patterns, including both wild-type and unique features. A notable characteristic of dun Mongolian horses is the presence of Bider markings-symmetrical, black-mottled patterns observed on the shoulder blades. These markings are also seen in Przewalski's horses.

View Article and Find Full Text PDF

Wnt/β-catenin signaling has been shown to regulate gene expressions in cardiomyocytes. However, it is not known if this effect is dependent on the sex of cells or the glucose level in the culture medium. In the present study, ventricular myocytes were prepared from male and female neonatal rats and maintained in either a glucose-rich (25 mM) medium or a low-glucose (3 mM), lipid-rich medium.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!