Objective: The purpose of this study was to evaluate the effects of the antimicrobial photodynamic therapy (a-PDT) with blue light and curcumin on oral disinfection during the 2 h after treatment.

Background Data: a-PDT is a technique that can potentially affect the viability of bacterial cells, with selective action targeting only areas with photosensitizer accumulation.

Materials And Methods: A randomized controlled trial was undertaken. Twenty-seven adults were randomly divided into three groups: (1) the PDT group, which was treated with the drug, curcumin, and blue light (n=9); (2) the light group, which was treated only with the blue light, and no drug (n=9) and; (3) the curcumin group, which was treated only with the drug, curcumin, and no light (n=9). The irradiation parameters were: blue light-emitting diode (LED) illumination (455±30 nm), 400 mW of average optical power, 5 min of application, illumination area of 0.6 cm(2), 600 mW/cm(2) of intensity, and 200 J/cm(2) of fluence. A curcumin concentration of 30 mg/L was used. The saliva samples were collected for bacterial counts at baseline and after the experimental phases (immediately after treatment, and 1 and 2 h after treatment). Serial dilutions were performed, and the resulting samples were cultured on blood agar plates in microaerophilic conditions. The number of colony-forming units (CFU) was determined.

Results: The PDT group showed a significant reduction of CFU immediately after treatment (post-treatment) with PDT (5.71±0.48, p=0.001), and 1 h (5.14±0.92, p=0.001) and 2 h (5.35±0.76, p=0.001) after treatment, compared with pretreatment (6.61±0.82). There were no significant changes for the light group. The curcumin group showed a significant increase of CFU 1 h after treatment (6.77±0.40, p=0.02) compared with pretreatment (5.57±0.91) falling to baseline values at 2 h after treatment (5.58±0.70).

Conclusions: The PDT group showed significant difference in microbial reduction (p<0.05) compared with both the light and curcumin groups until 2 h post-treatment. The new blue LED device for PDT using curcumin may be used for reduction of salivary microorganisms, leading to overall disinfection of the mouth (e.g., mucosa, tongue, and saliva), but new protocols should be explored.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4220703PMC
http://dx.doi.org/10.1089/pho.2014.3805DOI Listing

Publication Analysis

Top Keywords

blue light
16
pdt group
12
group treated
12
photodynamic therapy
8
light curcumin
8
oral disinfection
8
randomized controlled
8
controlled trial
8
treated drug
8
drug curcumin
8

Similar Publications

Background: Candida albicans is the primary cause of vulvovaginal candidiasis, a worldwide health concern for women. The use of supplemental methods, such as antimicrobial photodynamic therapy (aPDT) and probiotics, was promoted by the ineffectiveness of the existing antifungal drugs.

Methods: This study examines the combined effects of probiotics (Bacillus and Enterococcus isolated from the fermented pickles) and PDT (using red laser (655 nm, 18 J/cm) as a light source and methylene blue dye (30 mg/mL) as a photosensitizer) on the in vitro virulence activity of C.

View Article and Find Full Text PDF

The degradation of methylene blue dye-contaminated wastewater via photocatalysis is an efficient approach towards environmental remediation. The SrZrO perovskite photocatalyst was synthesized using the modified Pechini sol-gel method, and characterized using XRD, FESEM, FTIR, and UV-visible spectrophotometer. Crystallite size obtained by the Scherrer and Williamson-Hall methods were 45.

View Article and Find Full Text PDF

Zebrafish serve as a pivotal model for bioimaging and toxicity assessments; however, the toxicity of banana peel-derived carbon dots in zebrafish has not been previously reported. The aim of this study was to assess the toxicity of carbon dots derived from banana peel in zebrafish, focusing on two types prepared through hydrothermal and pyrolysis methods. Banana peels were synthesized using hydrothermal and pyrolysis techniques and then compared for characteristics, bioimaging ability, and toxicity in zebrafish as an animal model.

View Article and Find Full Text PDF

Dynamic Reconstruction of Fluid Interface Manipulated by Fluid Balancing Agent for Scalable Efficient Perovskite Solar Cells.

Adv Mater

January 2025

Institute for Advanced Materials & Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China.

Laboratory-scale spin-coating techniques are widely employed for fabricating small-size, high-efficiency perovskite solar cells. However, achieving large-area, high-uniformity perovskite films and thus high-efficiency solar cell devices remain challenging due to the complex fluid dynamics and drying behaviors of perovskite precursor solutions during large-area fabrication processes. In this work, a high-quality, pinhole-free, large-area FAPbI perovskite film is successfully obtained via scalable blade-coating technology, assisted by a novel bidirectional Marangoni convection strategy.

View Article and Find Full Text PDF

Bacterial pathogens possess a remarkable capacity to sense and adapt to ever-changing environments. For example, Vibrio cholerae, the causative agent of the severe diarrheal disease cholera, thrives in aquatic ecosystems and human hosts through dynamic survival strategies. In this study, we investigated the role of three photolyases, enzymes that repair DNA damage caused by exposure to UV radiation and blue light, in the environmental survival of V.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!