Firearms can cause fatal wounds, which can be identified by traces on or around the body. However, there are cases where neither the bullet nor gun is found at the crime scene. Ballistic research involving finite element models can reproduce computational biomechanical conditions, without compromising bioethics, as they involve no direct tests on animals or humans. This study aims to compare the morphologies of gunshot entrance holes caused by.40-caliber Smith & Wesson (S&W), .380-caliber, and 9×19-mm Luger bullets. A fully metal-jacketed.40 S&W projectile, a fully metal-jacketed.380 projectile, and a fully metal-jacketed 9×19-mm Luger projectile were computationally fired at the glabellar region of the finite element model from a distance of 10 cm, at perpendicular incidence. The results show different morphologies in the entrance holes produced by the three bullets, using the same skull at the same shot distance. The results and traits of the entrance holes are discussed. Finite element models allow feasible computational ballistic research, which may be useful to forensic experts when comparing and analyzing data related to gunshot wounds in the forehead.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4208880PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0111192PLOS

Publication Analysis

Top Keywords

finite element
16
entrance holes
12
gunshot entrance
8
smith wesson
8
luger bullets
8
element models
8
9×19-mm luger
8
projectile fully
8
comparison gunshot
4
entrance
4

Similar Publications

In this paper, we studied the diffusion characteristics and distribution patterns of gas leakage in soil from buried natural gas pipelines. The three-dimensional simulation model of buried natural gas pipeline leakage was established using Fluent software. Monitoring points of gas leakage mole fraction were set up at different locations, and the influence of buried depth and pressure factors on the mole fraction and diffusion of leaked gas was analyzed.

View Article and Find Full Text PDF

Piezoelectric materials are increasingly used in portable smart electronics and Internet of Things sensors. Among them, piezoelectric macro fiber composites (MFCs) have attracted much attention due to their architectural simplicity, scalability, and high-power density. However, most MFCs currently use toxic lead-based piezoelectric materials, hindering their applications for bio-friendly intelligent electronics.

View Article and Find Full Text PDF

Temperature-Robust Broadband Metamaterial Absorber via Semiconductor MOFs/Paraffin Hybridization.

Small

December 2024

Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.

The demand for temperature-robust electromagnetic wave (EMW) absorption materials is escalating due to the varying operational temperatures of electronic devices, which can easily soar up to 100 °C, significantly affecting EMW interference management. Traditional absorbers face performance degradation across broad temperature ranges due to alterations in electronic mobility and material impedance. This study presented a novel approach by integrating semiconductor metal-organic frameworks (SC-MOFs) with paraffin wax (PW), leveraging the precise control of interlayer spacing in SC-MOFs for electron mobility regulation and the introduction of paraffin wax for temperature-inert electromagnetic properties.

View Article and Find Full Text PDF

Pressure-improved Scott-Vogelius type elements.

Calcolo

December 2024

Institut für Mathematik, Universität Zürich, Winterthurerstr 190, 8057 Zürich, Switzerland.

The Scott-Vogelius element is a popular finite element for the discretization of the Stokes equations which enjoys inf-sup stability and gives divergence-free velocity approximations. However, it is well known that the convergence rates for the discrete pressure deteriorate in the presence of certain in a triangulation of the domain. Modifications of the Scott-Vogelius element such as the recently introduced pressure-wired Stokes element also suffer from this effect.

View Article and Find Full Text PDF

In a slim-floor structural system, beams and slabs are placed at the same level, reducing the overall floor height and material usage in vertical structures, thereby improving economic efficiency. The use of slim-floor structures is common practice in Finnish construction where these structures are typically constructed using hollow-concrete slabs and welded steel box beams. However, in Finland, only a few buildings utilise cross-laminated timber (CLT) slabs in slim-floor structures, and none have incorporated the composite action between CLT and steel beams.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!