Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Recommender systems are designed to assist individual users to navigate through the rapidly growing amount of information. One of the most successful recommendation techniques is the collaborative filtering, which has been extensively investigated and has already found wide applications in e-commerce. One of challenges in this algorithm is how to accurately quantify the similarities of user pairs and item pairs. In this paper, we employ the multidimensional scaling (MDS) method to measure the similarities between nodes in user-item bipartite networks. The MDS method can extract the essential similarity information from the networks by smoothing out noise, which provides a graphical display of the structure of the networks. With the similarity measured from MDS, we find that the item-based collaborative filtering algorithm can outperform the diffusion-based recommendation algorithms. Moreover, we show that this method tends to recommend unpopular items and increase the global diversification of the networks in long term.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4208813 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0111005 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!