Oxygen: double-edged sword in cardiac function and repair.

Circ Res

From the Gladstone Institute of Cardiovascular Disease and Roddenberry Stem Cell Center at Gladstone Institutes, San Francisco, CA (Y.-S.A., D.S.); and Departments of Pediatrics and Biochemistry and Biophysics, University of California, San Francisco (Y.-S.A., D.S.)

Published: October 2014

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCRESAHA.114.305322DOI Listing

Publication Analysis

Top Keywords

oxygen double-edged
4
double-edged sword
4
sword cardiac
4
cardiac function
4
function repair
4
oxygen
1
sword
1
cardiac
1
function
1
repair
1

Similar Publications

Involvement of inorganic nitrogen species (NO (x = 2, 3)) in the degradation of organic contaminants in environmental waters via UV irradiation or chemical oxidation: A dual-edged approach.

Sci Total Environ

January 2025

Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangzhou, 510000, China.

OH-mediated advanced oxidation processes (AOPs) are widely used in wastewater treatment and drinking water purification. Recently, an increasing number of studies have indicated that common inorganic nitrogen ions can efficiently generate •OH under UV irradiation, demonstrating strong performance in the degradation of various contaminants. Conversely, the presence of inorganic nitrogen ions in UV or other oxidation processes dramatically increases the yield of toxic nitro (so)-aromatic products and the formation potential of nitrogenous disinfection by-products with high genotoxicity and cytotoxicity.

View Article and Find Full Text PDF

Cancer metabolism is sustained both by enhanced aerobic glycolysis, characteristic of the Warburg phenotype, and oxidative metabolism. Cell survival and proliferation depends on a dynamic equilibrium between mitochondrial function and glycolysis, which is heterogeneous between tumors and even within the same tumor. During oxidative phosphorylation, electrons from NADH and FADH originated in the tricarboxylic acid cycle flow through complexes of the electron transport chain.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) are double-edged swords in biological systems-they are essential for normal cellular functions but can cause damage when accumulated due to oxidative stress. Manganese superoxide dismutase (MnSOD), located in the mitochondrial matrix, is a key enzyme that neutralizes superoxide radicals (O), maintaining cellular redox balance and integrity. This review examines the development and therapeutic potential of MnSOD mimetics-synthetic compounds designed to replicate MnSOD's antioxidant activity.

View Article and Find Full Text PDF

Reactive oxygen species: Orchestrating the delicate dance of platelet life and death.

Redox Biol

January 2025

School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China. Electronic address:

Article Synopsis
  • Platelets play a critical role in blood clotting and the immune response, relying on a balanced relationship between their production and destruction influenced by reactive oxygen species (ROS).
  • Moderate levels of ROS enhance platelet production and function, aiding in processes like collagen binding and thrombus formation, but high levels can lead to platelet apoptosis and increased risk of thrombosis.
  • The review emphasizes the need for further research into specific ROS signaling pathways, which could lead to new therapies for platelet-related disorders by leveraging the beneficial aspects of ROS while managing their harmful effects.
View Article and Find Full Text PDF

Tools to investigate oxygen-related challenges with flavin-dependent enzymes.

Arch Biochem Biophys

February 2025

Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800, Kgs Lyngby, Denmark. Electronic address:

Enzymes have multiple applications in medicine but during the past decades interest in the application of enzymes as (bio)catalysts to produce a wide range of valuable molecules in various industries has increased. Many chemical compounds (from pharmaceuticals to bulk commodities) can be produced by a series of enzymatically-catalysed chemical steps, and in many cases one of these steps is an oxidation. The use of molecular oxygen as an oxidising agent in biocatalytic processes is a double-edged approach.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!