Aplastic anemia (AA) is characterized by hypocellular marrow and peripheral pancytopenia. Because interferon gamma (IFN-γ) can be detected in peripheral blood mononuclear cells of AA patients, it has been hypothesized that autoreactive T lymphocytes may be involved in destroying the hematopoietic stem cells. We have observed AA-like symptoms in our IFN-γ adenylate-uridylate-rich element (ARE)-deleted (del) mice, which constitutively express a low level of IFN-γ under normal physiologic conditions. Because no T-cell autoimmunity was observed, we hypothesized that IFN-γ may be directly involved in the pathophysiology of AA. In these mice, we did not detect infiltration of T cells in bone marrow (BM), and the existing T cells seemed to be hyporesponsive. We observed inhibition in myeloid progenitor differentiation despite an increase in serum levels of cytokines involved in hematopoietic differentiation and maturation. Furthermore, there was a disruption in erythropoiesis and B-cell differentiation. The same phenomena were also observed in wild-type recipients of IFN-γ ARE-del BM. The data suggest that AA occurs when IFN-γ inhibits the generation of myeloid progenitors and prevents lineage differentiation, as opposed to infiltration of activated T cells. These results may be useful in improving treatment as well as maintaining a disease-free status.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4263980PMC
http://dx.doi.org/10.1182/blood-2014-01-549527DOI Listing

Publication Analysis

Top Keywords

aplastic anemia
8
lineage differentiation
8
ifn-γ
7
differentiation
5
cells
5
ifn-γ aplastic
4
anemia altering
4
altering hematopoietic
4
hematopoietic stem/progenitor
4
stem/progenitor cell
4

Similar Publications

Introduction: Eculizumab is a C5 complement inhibitor approved by the FDA for the targeted treatment of four rare diseases, paroxysmal nocturnal hemoglobinuria (PNH), atypical hemolytic uremic syndrome (aHUS), generalized myasthenia gravis (gMG), and aquaporin-4 immunoglobulin G-positive optic neuromyelitis optica spectrum disorders (AQP4-IgG+NMOSD). The current study was conducted to assess real-world adverse events (AEs) associated with eculizumab through data mining of the FDA Adverse Event Reporting System (FAERS).

Methods: Disproportionality analyses, including Reporting Ratio Ratio (ROR), Proportional Reporting Ratio (PRR), Bayesian Confidence Propagation Neural Network (BCPNN), and Multi-Item Gamma Poisson Shrinker (MGPS) algorithms were used to quantify the signals of eculizumab-associated AEs.

View Article and Find Full Text PDF

Clinical utility of hematological parameters in aplastic anemia.

Sci Rep

January 2025

Department of Laboratory Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.

Hematological parameters available on automated hematology analyzers have been shown to be useful indicators for hematological disorders. However, extensive studies especially in aplastic anemia for these indices are sparse. Our aim was to investigate the clinical utility of hematological parameters in aplastic anemia.

View Article and Find Full Text PDF

Poloxamer 188 (P188) was tested for effect on medullary hematopoiesis in aplastic anemia. P188 was administered to CBA mice with developing anemia via oral gavage at doses of 10, 100, and 500 mg/kg. A dose-dependent effect was observed, including an increase in erythrocyte count, hemoglobin, and reticulocyte count.

View Article and Find Full Text PDF

Fanconi anemia (FA) is a rare genetic disorder that affects multiple systems in the body and is the most prevalent congenital syndrome, leading to bone marrow failure. Twenty-two genes have been identified as contributors to the disease. Significant advancements have been made in the past 2 decades in understanding the genetic and pathophysiological processes involved.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!