The role of the FPR2/ALX receptor in atherosclerosis development and plaque stability.

Cardiovasc Res

Experimental Cardiovascular Research Unit, Karolinska Institutet, Center for Molecular Medicine, L8: 03, Karolinska University Hospital, Stockholm 171 76, Sweden Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden

Published: January 2015

Aims: The formyl peptide receptor (FPR) subtype FPR2/ALX transduces pro-inflammatory responses and participates in the resolution of inflammation depending on activation. The aim of the present study was to unravel the role of FPR2/ALX signalling in atherosclerosis.

Methods And Results: Expression of FPR2/ALX was analysed in 127 human carotid atherosclerotic lesions and revealed that this receptor was expressed on macrophages, smooth muscle cells (SMCs), and endothelial cells. Furthermore, FPR2/ALX mRNA levels were significantly up-regulated in atherosclerotic lesions compared with healthy vessels. In multiple regression, age, creatinine, and clinical signs of increased cerebral ischaemia were independent predictors of FPR2/ALX expression. To provide mechanistic insights into these observations, we generated Ldlr(-/-)xFpr2(-/-) mice, which exhibited delayed atherosclerosis development and less macrophage infiltration compared with Ldlr(-/-)xFpr2(+/+) mice. These findings were reproduced by transplantation of Fpr2(-/-) bone marrow into Ldlr(-/-) mice and further extended by in vitro experiments, demonstrating a lower inflammatory state in Fpr2(-/-) macrophages. FPR2/ALX expression correlated with chemo- and cytokines in human atherosclerotic lesions and leucocytes. Finally, atherosclerotic lesions in Ldlr(-/-)xFpr2(-/-) mice exhibited decreased collagen content, and Fpr2(-/-) SMCs exhibited a profile of increased collagenase and decreased collagen production pathways.

Conclusion: FPR2/ALX is proatherogenic due to effects on bone marrow-derived cells, but promoted a more stable plaque phenotype through effects on SMCs. Taken together, these results suggest a dual role of FPR2/ALX signalling in atherosclerosis by way of promoting disease progression and but increasing plaque stability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4277257PMC
http://dx.doi.org/10.1093/cvr/cvu224DOI Listing

Publication Analysis

Top Keywords

atherosclerotic lesions
16
role fpr2/alx
12
atherosclerosis development
8
plaque stability
8
fpr2/alx
8
fpr2/alx signalling
8
fpr2/alx expression
8
ldlr-/-xfpr2-/- mice
8
mice exhibited
8
decreased collagen
8

Similar Publications

Background: Despite fractional flow reserve (FFR)-guided deferral of revascularization, recurrent events in patients with diabetes or after myocardial infarction remain common. This study aimed to assess the association between FFR-negative but high-risk nonculprit lesions and clinical outcomes.

Methods: This is a patient-level pooled analysis of the prospective natural-history COMBINE (OCT-FFR) study (Optical Coherence Tomography Morphologic and Fractional Flow Reserve Assessment in Diabetes Mellitus Patients) and PECTUS-obs study (Identification of Risk Factors for Acute Coronary Events by OCT After STEMI and NSTEMI Patients With Residual Non- Flow Limiting Lesions).

View Article and Find Full Text PDF

Cadmium promotes hyaluronan synthesis by inducing hyaluronan synthase 3 expression in cultured vascular endothelial cells via the c-Jun N-terminal kinase-c-Jun pathway.

Toxicology

January 2025

Department of Environmental Health, Faculty of Pharmaceutical Sciences, Toho University, 2-1-1 Miyama, Funabashi, Chiba 274-8510, Japan. Electronic address:

Cadmium is a heavy metal risk factor for various cardiovascular diseases, such as atherosclerosis. In atherosclerotic lesions, hyaluronan, a glycosaminoglycan consisting of β4-glucuronic acid-β3-N-acetylglucosamine disaccharides repeats, is highly accumulated, regulating signal transduction, cell migration, and angiogenesis. Hyaluronan is synthesized by hyaluronan synthase (HAS)1-3 in the plasma membrane and secreted into the extracellular space.

View Article and Find Full Text PDF

Percutaneous coronary interventions in highly calcified atherosclerotic lesions are challenging due to the high mechanical stiffness that significantly restricts stent expansion. Intravascular lithotripsy (IVL) is a novel vessel preparation technique with the potential to improve interventional outcomes by inducing microscopic and macroscopic cracks to enhance stent expansion. However, the exact mechanism of action for IVL is poorly understood, and it remains unclear whether the improvement in-stent expansion is caused by either the macro-cracks allowing the vessel to open or the micro-cracks altering the bulk material properties.

View Article and Find Full Text PDF

Background: Carotid webs are rare nonatherosclerotic disorders in the carotid artery and are increasingly recognized as factors of ischemic stroke in the young population. Asymptomatic webs can be treated with antithrombotic therapy, whereas symptomatic cases frequently require surgical interventions, including carotid endarterectomy (CEA). However, guidelines for the optimal timing of these treatments remain unestablished, especially compared to atherosclerotic stenotic lesions, due to the rarity of carotid webs.

View Article and Find Full Text PDF

Atherosclerosis (ATH) represents a major cause of cardiovascular disease. Long noncoding RNA (LncRNA) myocardin-induced smooth muscle lncRNA, inducer of differentiation (MYOSLID) and microRNA (miR) -29c-3p show substantial roles in ATH. We investigated their regulatory mechanisms on vascular smooth muscle cell (VSMC) proliferation and migration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!