Aims: Obesity and Type 2 diabetes mellitus (DM) induce left ventricular (LV) diastolic dysfunction, which contributes to an increasing prevalence of heart failure with a preserved LV ejection fraction. We investigated the effects of sitagliptin (SITA), an inhibitor of dipeptidylpeptidase-4 (DPP-4) and anti-diabetic drug, on LV structure and function of obese mice with Type 2 DM.

Methods And Results: Obese Type 2 diabetic mice (Lepr(db/db), BKS.Cg-Dock7(m)+/+ Lepr(db)/J), displaying increased cardiomyocyte and LV stiffness at the age of 16 weeks, were treated with SITA (300 mg/kg/day) or vehicle for 8 weeks. SITA severely impaired serum DPP-4 activity, but had no effect on glycaemia. Invasive haemodynamic recordings showed that SITA reduced LV passive stiffness and increased LV stroke volume; LV end-systolic elastance remained unchanged. In addition, SITA reduced resting tension of isolated single cardiomyocytes and intensified phosphorylation of the sarcomeric protein titin. SITA also increased LV concentrations of cGMP and increased activity of protein kinase G (PKG). In vitro activation of PKG decreased resting tension of cardiomyocytes from vehicle-treated mice, but had no effect on resting tension of cardiomyocytes from SITA-treated mice.

Conclusions: In obese Type 2 diabetic mice, in the absence of hypoglycaemic effects, inhibition of DPP-4 decreases LV passive stiffness and improves global LV performance. These effects seem at least partially mediated by stimulatory effects on the myocardial cGMP-PKG pathway and, hence, on the phosphorylation status of titin and the hereto coupled cardiomyocyte stiffness modulus.

Download full-text PDF

Source
http://dx.doi.org/10.1093/cvr/cvu223DOI Listing

Publication Analysis

Top Keywords

diabetic mice
12
resting tension
12
left ventricular
8
ventricular diastolic
8
diastolic dysfunction
8
obese type
8
type diabetic
8
cardiomyocyte stiffness
8
sita reduced
8
passive stiffness
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!