Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Von Willebrand Factor (VWF) A1-domain binding to platelet receptor GpIbα is an important fluid-shear dependent interaction that regulates both soluble VWF binding to platelets, and platelet tethering onto immobilized VWF. We evaluated the roles of different structural elements at the N-terminus of the A1-domain in regulating shear dependent platelet binding. Specifically, the focus was on the VWF D'D3-domain, A1-domain N-terminal flanking peptide (NFP), and O-glycans on this peptide.
Methods And Results: Full-length dimeric VWF (ΔPro-VWF), dimeric VWF lacking the D'D3 domain (ΔD'D3-VWF), and ΔD'D3-VWF variants lacking either the NFP (ΔD'D3NFP(─)-VWF) or just O-glycans on this peptide (ΔD'D3OG(─)-VWF) were expressed. Monomeric VWF-A1 and D'D3-A1 were also produced. In ELISA, the apparent dissociation constant (KD) of soluble ΔPro-VWF binding to immobilized GpIbα (KD≈100 nmol/L) was 50- to 100-fold higher than other proteins lacking the D'D3 domain (KD~0.7 to 2.5 nmol/L). Additionally, in surface plasmon resonance studies, the on-rate of D'D3-A1 binding to immobilized GpIbα (kon=1.8±0.4×10(4) (mol/L)(-1)·s(-1); KD=1.7 μmol/L) was reduced compared with the single VWF-A1 domain (kon=5.1±0.4×10(4) (mol/L)(-1)·s(-1); KD=1.2 μmol/L). Thus, VWF-D'D3 primarily controls soluble VWF binding to GpIbα. In contrast, upon VWF immobilization, all molecular features regulated A1-GpIbα binding. Here, in ELISA, the number of apparent A1-domain sites available for binding GpIbα on ΔPro-VWF was ≈50% that of the ΔD'D3-VWF variants. In microfluidics based platelet adhesion measurements on immobilized VWF and thrombus formation assays on collagen, human platelet recruitment varied as ΔPro-VWF<ΔD'D3-VWF<ΔD'D3NFP(─)-VWF<ΔD'D3OG(─)-VWF.
Conclusions: Whereas VWF-D'D3 is the major regulator of soluble VWF binding to platelet GpIbα, both the D'D3-domain and N-terminal peptide regulate platelet translocation and thrombus formation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4323794 | PMC |
http://dx.doi.org/10.1161/JAHA.114.001420 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!