Introduction: Therapeutic angiogenesis by autologous-peripheral blood mononuclear cells (A-PBMNC) implantation has been shown to be a safe and effective treatment for critical limb ischemia (CLI). We herein report our investigation of the long-term efficacy of implantation of A-PBMNC produced by selective filtration to treat patients with CLI, for which surgical bypass and/or percutaneous transluminal angioplasty are not possible.
Materials And Methods: This is a prospective, and not a randomized, study based on a treated group who did not respond to conventional therapy (n=43) when implanted with A-PBMNC cells versus a historically matched control group. Patients of both groups were suffering from CLI Fontaine scale IV with chronic ulcers and various accompanying conditions (diabetes, heart disease, kidney failure, etc.). Treated patients were implanted with 12 mL of A-PBMNC, 0.2-0.3 mL for each bolus, collected by selective filtration from 120 mL of peripheral blood in the ischemic area of the limbs. Patients were not mobilized by granulocyte colony-stimulating factor, and the A-PBMNC treatment was repeated for a maximum of three times.
Results: The A-PBMNC-treated group showed a statistically significant improvement of limb rescue of 95.3% versus 52.2% of the control group (p<0.001), and the result had been maintained for 2 years. The A-PBMNC group also showed reduction in pain at rest, increased maximum walking distance, and healing of the wound, which led to an overall improvement in the quality of life. Post-treatment radiological studies showed an improvement of vascularization with the formation of new collateral and by histological findings. Within 2 years of follow-up, none of the patients whom we treated showed any major or systemic adverse effects.
Conclusion: The local injection of A-PBMNC showed striking early and long-term effects together with a favorable safety profile, significantly decreasing the risk of amputation. Our results are comparable with published data obtained by injection of bone marrow mononuclear cells, but with a lot less invasive approach. Moreover the intraoperative selective filtration system we used is fast, safe, not operator dependent, and easy to use in a sterile operating theatre. This system aims to produce fresh A-PBMNC as a valuable treatment option, particularly for those difficult patients who cannot undergo revascularization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/ten.TEC.2014.0245 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!