Novel chemical route for atomic layer deposition of MoS₂ thin film on SiO₂/Si substrate.

Nanoscale

Department of Chemical Engineering, Konkuk University, 120 Neungdong-Ro, Gwangjin-Gu, Seoul 143-701, Korea.

Published: November 2014

Recently MoS₂ with a two-dimensional layered structure has attracted great attention as an emerging material for electronics and catalysis applications. Although atomic layer deposition (ALD) is well-known as a special modification of chemical vapor deposition in order to grow a thin film in a manner of layer-by-layer, there is little literature on ALD of MoS₂ due to a lack of suitable chemistry. Here we report MoS₂ growth by ALD using molybdenum hexacarbonyl and dimethyldisulfide as Mo and S precursors, respectively. MoS₂ can be directly grown on a SiO₂/Si substrate at 100 °C via the novel chemical route. Although the as-grown films are shown to be amorphous in X-ray diffraction analysis, they clearly show characteristic Raman modes (E(1)₂g and A₁g) of 2H-MoS₂ with a trigonal prismatic arrangement of S-Mo-S units. After annealing at 900 °C for 5 min under Ar atmosphere, the film is crystallized for MoS₂ layers to be aligned with its basal plane parallel to the substrate.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4nr04816dDOI Listing

Publication Analysis

Top Keywords

novel chemical
8
chemical route
8
atomic layer
8
layer deposition
8
thin film
8
sio₂/si substrate
8
mos₂
6
route atomic
4
deposition mos₂
4
mos₂ thin
4

Similar Publications

Added safety measures coupled with the development and use of pathogen reduction technologies (PRT) significantly reduces the risk of transfusion-transmitted infections (TTIs) from blood products. Current approved PRTs utilize chemical and/or UV-light based inactivation methods. While the effectiveness of these PRTs in reducing pathogens are well documented, these can cause tolerable yet unintended consequences on the quality and efficacy of the transfusion products.

View Article and Find Full Text PDF

Imaging phenotype reveals that disulfirams induce protein insolubility in the mitochondrial matrix.

Sci Rep

December 2024

Center for Drug Discovery, Graduate School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka, 422-8526, Shizuoka, Japan.

The cell painting assay is useful for understanding cellular phenotypic changes and drug effects. To identify other aspects of well-known chemicals, we screened 258 compounds with the cell painting assay and focused on a mitochondrial punctate phenotype seen with disulfiram. To elucidate the reason for this punctate phenotype, we looked for clues by examining staining steps and gene knockdown as well as examining protein solubility and comparing cell lines.

View Article and Find Full Text PDF

The oxidation of 5-HMF to HMFCA is an important yet complex process, as it generates high-value chemical intermediates. Achieving this transformation efficiently requires the development of non-precious, highly active catalysts derived from renewable biomass sources. In this work, we introduce UoM-1 (UoM, University of Mazandaran), a novel cobalt-based metal-organic framework (Co-MOF) synthesized using a simple one-step ultrasonic irradiation method.

View Article and Find Full Text PDF

Strategic model for integrating biogas a framework for sustainable energy integration in agro-industries.

Sci Rep

December 2024

Industrial and Systems Engineering Department, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia.

The framework of the methodology presented in this study is an effort to integrate and optimize the agro-industry sector, especially energy in biogas. In this study, the technique of the system in functional analysis is shown systematically to translate various energy requirements in the factory as criteria for performance and functional design to be integrated, optimized, and energy efficient. The case study results indicated that biogas power plants, with a capacity of 1.

View Article and Find Full Text PDF

The search for stable compounds containing an antiaromatic cyclic 4π system is a challenge for inventive chemists that can look back on a long history. Here we report the isolation and characterization of the novel 4π-electron tetrasilacyclobutadiene, an analogue of a 4π neutral cyclobutadiene that exhibits surprising features of a Möbius-type aromatic ring. Reduction of RSiCl (R = (Pr)PCH) with KC in the presence of cycloalkyl amino-carbene (cAAC) led to the formation of corresponding silylene 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!