Directly grown Si nanowire arrays on Cu foam with a coral-like surface for lithium-ion batteries.

Nanoscale

Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.

Published: November 2014

In order to mitigate the drastic volumetric expansion (>300%) of silicon (Si) during the lithiation process, we demonstrate the synthesis of novel Si nanowire arrays (n-SNWAs) with a coral-like surface on Cu foam via a one-step CVD method, in which the Cu foam can simultaneously act as a catalyst and current collector. The unique coral-like surface endows n-SNWAs with a high structural integrity, which is beneficial for enhancing their electrochemical performance. In addition, the as-prepared n-SNWAs on Cu foam can be directly applied as the anode for lithium-ion batteries (LIBs), exhibiting a very high reversible discharge capacity (2745 mA h g(-1) at 200 mA g(-1)) and a fast charge and discharge capability (884 mA h g(-1) at 3200 mA g(-1)), which is much higher than the conventional SNWAs (c-SNWAs, only 127 mA h g(-1) at 3200 mA g(-1)). Meanwhile, they deliver an improved cycling stability (2178 mA h g(-1) at 400 mA g(-1) after 50 cycles). More significantly, the as-synthesized n-SNWAs on Cu foam also possess a superior specific areal capacity of 4.1 mA h cm(-2) at 0.6 mA cm(-2). Such excellent electrochemical performance is superior, or at least comparable, to the best report for Si anode materials. Combining the cost-effective and facile preparation method, the present n-SNWAs on Cu foam can serve as a promising anode for LIBs.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4nr05469eDOI Listing

Publication Analysis

Top Keywords

coral-like surface
12
n-snwas foam
12
nanowire arrays
8
lithium-ion batteries
8
electrochemical performance
8
g-1
8
g-1 3200
8
3200 g-1
8
foam
6
n-snwas
5

Similar Publications

Preparation and Performance Study of MXene-Regulated Ethylene Glycol-Induced WO Film.

Micromachines (Basel)

December 2024

College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China.

This study introduces the development of a W-M electrochromic film, characterized by a "coral"-like TiO@WO heterostructure, synthesized via a hydrothermal process leveraging the inherent instability of MXene. The film showcases exceptional electrochromic performance, with a coloring response time of 2.8 s, a bleaching response time of 4.

View Article and Find Full Text PDF

Developing efficient and cost-effective rare earth element-based electrocatalysts for water splitting remains a significant challenge. To address this, interface engineering and charge modulation strategies were employed to create a three-dimensional coral-like CeF/MoO heterostructure electrocatalyst, grown in situ on the multistage porous channels of carbonized sugarcane fiber (CSF). Integrating abundant CeF/MoO heterostructure interfaces and numerous oxygen vacancy defects significantly enhanced the catalyst's active sites and molecular activation capabilities.

View Article and Find Full Text PDF

Preparation of cellulose-based fluorescent aggregations with various morphologies and their microstructure-correlated fluorescence behavior.

Int J Biol Macromol

December 2024

School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China; Key Laboratory of Functional Textile Material and Product, Xi'an Polytechnic University, Ministry of Education, Xi'an 710048, Shaanxi, China. Electronic address:

Article Synopsis
  • An efficient method was developed to create cellulose-based fluorescent materials with customizable shapes and sizes using cross-linking copolymerization and self-assembly techniques.
  • Fluorescein isothiocyanate (FITC) was successfully encapsulated into these materials, resulting in various morphologies, including flower-like and tentacle-like designs, depending on the composition of cellulose and gelatin.
  • The flower-like aggregates exhibited the highest fluorescence intensity due to their structure, which minimizes interactions that can reduce fluorescence, indicating potential uses in applications such as information storage and special fibers.
View Article and Find Full Text PDF

Morphological and molecular identification of causing storage bulb rot disease of Lanzhou edible lily in China and its biological characteristics.

Front Microbiol

December 2024

College of Plant Protection, Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Gansu Agricultural University, Lanzhou, China.

Article Synopsis
  • Lily bulb rot disease has caused significant yield losses in edible lilies in China, necessitating a combination of morphological and molecular methods for diagnosis.
  • During the study, a specific strain causing rot was isolated from affected bulbs in Lanzhou, confirming its pathogenicity with 100% effectiveness in causing rot symptoms.
  • The pathogen was identified based on its distinct morphological features and genetic analysis, marking the first documented case of this disease affecting edible lilies in China and offering insights for developing better control strategies.
View Article and Find Full Text PDF

Phosphorus vacancies regulation and heterogeneous interfacial engineering of coral-like ZnO/FeCoPv@N-doped carbon hierarchical microspheres to boost overall water splitting.

J Colloid Interface Sci

January 2025

Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.

Vacancy engineering and heterostructure construction are regarded as potent approaches for synergistically boosting hydrogen production in renewable energy conversion. Herein, a selective phosphorization strategy was implemented to fabricate coral-like ZnO/FeCoP@N-doped carbon hierarchical microspheres (ZnO/FeCoP@NCHMS) via only controllably phosphorizing the Co and Fe atoms in a precursor, which was formed by generating ZnCoFe LDH on the surface of a zinc cobalt coordination polymer microsphere. Then, by adopting a reduction treatment for ZnO/FeCoP@NCHMS, the innovative ZnO/FeCoPv@NCHMS with abundant phosphorus vacancies (Pv) was realized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!