Insect-specific toxins derived from Bacillus thuringiensis (Bt) provide a valuable resource for pest suppression. Here we review the different strategies that have been employed to enhance toxicity against specific target species including those that have evolved resistance to Bt, or to modify the host range of Bt crystal (Cry) and cytolytic (Cyt) toxins. These strategies include toxin truncation, modification of protease cleavage sites, domain swapping, site-directed mutagenesis, peptide addition, and phage display screens for mutated toxins with enhanced activity. Toxin optimization provides a useful approach to extend the utility of these proteins for suppression of pests that exhibit low susceptibility to native Bt toxins, and to overcome field resistance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4210883PMC
http://dx.doi.org/10.3390/toxins6103005DOI Listing

Publication Analysis

Top Keywords

toxin modification
4
modification enhanced
4
enhanced efficacy
4
efficacy insect-specific
4
toxins
4
insect-specific toxins
4
toxins derived
4
derived bacillus
4
bacillus thuringiensis
4
thuringiensis provide
4

Similar Publications

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Department of Neurology, Columbia University, New York, NY, USA.

Background: While dysregulated local innate immunity and microglial dysfunction are thought to play a pathogenic role in Alzheimer's disease (AD), the underlying mechanisms remain unclear. Importantly, activation of immune and metabolic pathways in myeloid cells can lead to a functional reprogramming process, termed innate immune memory (IIM), in which the response to an initial stimulus shapes long-lasting epigenetic modifications that alter the response to future inflammatory stimuli. This epigenetic imprinting process has been minimally studied in microglia.

View Article and Find Full Text PDF

Lysophosphatidylethanolamine (LPE) is a bioactive lipid mediator involved in diverse cellular functions. In this study, we investigated the effects of three LPE species, 1-palmitoyl LPE (16:0 LPE), 1-stearoyl LPE (18:0 LPE), and 1-oleoyl LPE (18:1 LPE) on pre-osteoblast MC3T3-E1 cells. All LPE species stimulated cell proliferation and activated the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) 1/2.

View Article and Find Full Text PDF

A single vector system for tunable and homogeneous dual gene expression in Escherichia coli.

Sci Rep

January 2025

Department of Physical Chemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia.

Expression of recombinant genes can be controlled using inducible promoters. However, the most commonly used IPTG- and arabinose-inducible promoters result in an 'all-or-nothing' response, leading to fully induced and uninduced bacterial subpopulations. Here, we investigate whether appropriate modifications to these promoter systems can be combined into a single vector system, enabling homogenous expression of two genes of interest that can be precisely tuned using inducer concentration.

View Article and Find Full Text PDF

Chitosan, a versatile biopolymer derived from chitin, is increasingly recognized in the milk industry for its multifunctional applications in drug delivery, smart packaging, and biosensor development. This review provides a comprehensive analysis of recent advances in chitosan production techniques. These include chemical, biological, and novel methods such as deep eutectic solvents (DES), microwave-assisted approaches, and laser-assisted processes.

View Article and Find Full Text PDF

Harmful algal blooms (HABs) can release cyanotoxins such as microcystins (MCs), especially, microcystin-leucine-arginine (MC-LR) which is one of the commonest and most toxic, into our water bodies and can lead to several acute or chronic diseases such as liver diseases and respiratory irritation in humans. There is an increasing need for rapid and simple detection of MC-LR in water bodies for early warning of HABs. In this study, we developed an innovative on-site screening electrochemical impedance spectroscopy (EIS) biosensor with a simplified calibration curve that can rapidly detect blooms for early action in similar water bodies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!