Although compelling evidence has demonstrated considerable neuroplasticity in the respiratory control system, few studies have explored the possibility of altering descending projections to phrenic motoneurons (PMNs) using noninvasive stimulation protocols. The present study was designed to investigate the immediate and long-lasting effects of a single session of transcutaneous spinal direct current stimulation (tsDCS), a promising technique for modulating spinal cord functions, on descending ventilatory commands in healthy humans. Using a double-blind, controlled, randomized, crossover approach, we examined the effects of anodal, cathodal, and sham tsDCS delivered to the C3-C5 level on (1) diaphragm motor-evoked potentials (DiMEPs) elicited by transcranial magnetic stimulation and (2) spontaneous ventilation, as measured by respiratory inductance plethysmography. Both anodal and cathodal tsDCS induced a progressive increase in DiMEP amplitude during stimulation that persisted for at least 15 min after current offset. Interestingly, cathodal, but not anodal, tsDCS induced a persistent increase in tidal volume. In addition, (1) short-interval intracortical inhibition, (2) nonlinear complexity of the tidal volume signal (related to medullary ventilatory command), (3) autonomic function, and (4) compound muscle action potentials evoked by cervical magnetic stimulation were unaffected by tsDCS. This suggests that tsDCS-induced aftereffects did not occur at brainstem or cortical levels and were likely not attributable to direct polarization of cranial nerves or ventral roots. Instead, we argue that tsDCS could induce sustained changes in PMN output. Increased tidal volume after cathodal tsDCS opens up the perspective of harnessing respiratory neuroplasticity as a therapeutic tool for the management of several respiratory disorders.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6608388 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.1288-14.2014 | DOI Listing |
Pulmonology
December 2025
Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France.
Background: Nasal high flow (NHF) has been proposed to sustain high intensity exercise in people with COPD, but we have a poor understanding of its physiological effects in this clinical setting.
Research Question: What is the effect of NHF during exercise on dynamic respiratory muscle function and activation, cardiorespiratory parameters, endurance capacity, dyspnoea and leg fatigue as compared to control intervention.
Study Design And Methods: Randomized single-blind crossover trial including COPD patients.
Front Pediatr
January 2025
The Ritchie Centre, Hudson Institute of Medical Research, Clayton VIC, Australia.
Introduction: As airway liquid is cleared into lung interstitial tissue after birth, the chest wall must expand to accommodate this liquid and the incoming air. We examined the effect of applying external positive and negative pressures to the chest wall on lung aeration in near-term rabbit kittens at risk of developing respiratory distress.
Methods: Rabbit kittens (30 days; term ∼31 days) were randomised into and groups.
Br J Anaesth
February 2025
CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain; Intensive Care Unit, Hospital Universitario La Princesa, Madrid, Spain.
Despite the maturity and sophistication of anaesthesia workstations, improvements in our understanding of intraoperative mechanical ventilation, and use of less invasive surgical techniques, postoperative pulmonary complications (PPCs) are still a common problem in surgical patients of all ages. PPCs are associated with a higher incidence of perioperative morbidity and mortality, longer hospital stays, and higher healthcare costs. PPCs are strongly associated with anaesthesia-induced atelectasis, which predisposes to lung damage when partially collapsed lungs are subjected to mechanical ventilation.
View Article and Find Full Text PDFAm J Vet Res
January 2025
National Taiwan University Veterinary Hospital, National Taiwan University, Taipei, Taiwan.
Objective: Enhancing ventilatory effort during pulmonary function testing can help reveal flow limitations not evident in normal tidal breathing. This study aimed to assess the efficacy and tolerability of using a CO2/O2 gas mixture to enhance tidal breathing with a barometric whole-body plethysmography system in both healthy cats and those with feline lower airway disease (FLAD).
Methods: This prospective study included healthy cats and those with FLAD, which underwent pulmonary function testing and were exposed to a 10% CO2/90% O2 gas mixture in a barometric whole-body plethysmography chamber, with CO2 concentrations maintained within the target range of 5% to 10%.
Adv Clin Exp Med
January 2025
Clinic of Children's Diseases, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Lithuania.
Background: The number of infants born via cesarean section (CS) is increasing globally due to medical and cultural reasons.
Objectives: This study aimed to determine the effect of the mode of delivery on early lung aeration in newborns using electrical impedance tomography (EIT).
Material And Methods: The case-control study was conducted from December 2020 to April 2021.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!