Non-Hodgkin's lymphoma (NHL) is a malignant tumor originated in lymphatic hematopoietic tissue. At present, chemotherapy is the main treatment method of NHL, but the chemoresistance is still an important reason for NHL treatment failure. The mechanism of NHL multidrug resistance (MDR) is complex, involving a variety of singnal pathways, in which mutation in the genetic level of the key genes can result in tumor cell resistance phenomenon. MicroRNA are small non-coding RNA that can be widely detected in plants,animal species and viruses. They regulate protein expression by repressing translation mRNA target at the post-transcriptional level, participating in the differentiation and development of tumor cells, as well as the occurrence and development of tumor, the change of the expression level microRNA plays an important role in the genesis and chemoresistance mechanism of NHL. Therefore, the intervening factitiously the expression level of microRNA in NHL through manufacturing antisense oligonucleotide (AMO) or using substitution of microRNA, changing the expression level of their target protein, and combining with the therapy of NHL, there will be an guiding significance in reversing the drug and radiation resistance of NHL, thus improving its poor prognosis. This article reviews the microRNAs closely related with drug and radiation resistance of NHL, and their potential targets. Furthermore, the specific role of these microRNAs in the genesis and chemoresistance mechanism of NHL are deeply elaborated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.7534/j.issn.1009-2137.2014.05.059 | DOI Listing |
Blood
January 2025
NIH, National Heart Lung Blood Institute, Bethesda, Maryland, United States.
Monoclonal antibodies (mAbs) improve survival of patients with mature B-cell malignancies. Fcγ-receptor dependent effector mechanisms kill tumor cells but can promote antigen loss through trogocytosis, contributing to treatment failures. Cell-bound mAbs trigger the complement cascade to deposit C3 activation fragments and lyse cells.
View Article and Find Full Text PDFJ Immunother Cancer
January 2025
Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei, China
Background: Resistance to existing therapies is a major cause of treatment failure in patients with refractory and relapsed B-cell non-Hodgkin's lymphoma (r/r B-NHL). Therapy-induced senescence (TIS) is one of the most important mechanisms of drug resistance.
Methods: This study used single-cell RNA sequencing to analyze doxorubicin-induced senescent B-NHL cells.
Biomolecules
December 2024
Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan.
The efficacy of statins as anti-cancer drugs has been demonstrated in several malignancies but has been poorly investigated in hematological malignancies (HM). By studying its effect on oncogenic miRNAs, we investigated the effect of statin therapy on HM patients. The data were used to identify enriched pathways that were altered due to statin treatment.
View Article and Find Full Text PDFLeukemia
December 2024
Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China.
Diffuse large B-cell lymphoma (DLBCL) is an aggressive malignancy and the most common form of non-Hodgkin lymphoma (NHL) that occurs worldwide. To discover risk factors and pathogenesis of DLBCL, we performed the largest GWAS of DLBCL to date in samples of East Asian ancestry, consisting of 2,888 patients with DLBCL and 12,458 controls. The meta-analysis identified three novel loci, rs2233434 on 6p21.
View Article and Find Full Text PDFHaematologica
December 2024
Medical University of Warsaw, Warsaw, Poland; Senior authors.
Our investigation uncovers that nanomolar concentrations of salinomycin, monensin, nigericin, and narasin (a group of potassium/sodium cation carriers) robustly enhance surface expression of CD20 antigen in B-cell-derived tumor cells, including primary malignant cells of chronic lymphocytic leukemia and diffuse large B-cell lymphoma. Experiments in vitro, ex vivo, and animal model reveal a novel approach of combining salinomycin or monensin with therapeutic anti-CD20 monoclonal antibodies or anti-CD20 CAR-T cells, significantly improving non- Hodgkin lymphoma (NHL) therapy. The results of RNA-seq, genetic editing, and chemical inhibition delineate the molecular mechanism of CD20 upregulation, at least partially, to the downregulation of MYC, the transcriptional repressor of the MS4A1 gene encoding CD20.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!