This study was aimed to elucidate the expression of costimulatory molecule CD80 and CD86 in HL-60 cells induced by proteasome inhibitor MG132 and its effect on allogeneic mixed lymphocyte reaction. Acute myelocytic leukemia cell line HL-60 and chronic myelocytic leukemia cell line K562 were cultured. The viability of the cells was measured by flow cytometry. Proteasome inhibitor MG132 at the concentrations of 2 or 3 µmol/L was used to stimulate the HL-60 cell cultured for 24 h and 48 h respectively, and the Annexin V/7-AAD staining and flow cytomotry were used to detect the apoptosis of the HL-60 cells. HL-60 and K562 cells were treated with 1 µmol/L MG132 for 24 h and 48 h respectively, then CD80 and CD86 antibodies were added, finally the expression of CD80 and CD86 was analysed by flow cytomery. The mRNA expression of CD86 in the HL-60 cells treated with 1 µmol/L MG132 was detected by RT-PCR. HL-60 and K562 cells were treated by 1 µmol/L MG132 and then underwent irradiation of 75 Gy (60)Co to kill the cells with their antigenicity preserved. Peripheral blood mononuclear cells (PBMNCs) of healthy volunteers, as reactive cells, were isolated and inoculated into the (60)Co irradiated HL-60 cells of different concentrations, as stimulating cells, CCK-8 was added and then the A value of absorbance was measured at the wave length of 450 nm in an enzyme labeling instrument. The results showed that the cell viability of the HL-60 cells treated with 1 µmol/L MG132 for 24 h an d 48 h was 92.95% and 85.87% respectively. The apoptotic rates of the HL-60 cells treated with MG132 increased in dose-and time-dependent manner. High-concentration of MG132 directly killed HL-60 cells. Before MG132 treatment K562 cells did not express CD86, but the CD86 expression of the HL-60 cells was up-regulated time-dependently after MG132 treatment (P < 0.01). The mRNA expression of CD86 in the HL-60 treated with MG132 was up-regulated time-dependently (P < 0.01). CCK-8 test showed that the proliferation level of PBMNC gradually increased along with the concentration of HL-60 cells treated with MG132 and reached its peak when the concentration of the HL-60 cells was 1×10(5) (P < 0.01). No remarkable proliferation of PBMNC was observed in the K562 groups no matter if the HL-60 cells had been treated with MG132. It is concluded that the high concentration of MG132 can directly kill HL-60 cells, low-concentration of MG132 can induce the expression of costimulatory molecule CD86 in HL-60 cells, also can improve the proliferation of PBMNC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.7534/j.issn.1009-2137.2014.05.012 | DOI Listing |
Foods
January 2025
Center for Converging Humanities, Kyung Hee University, Seoul 02447, Republic of Korea.
Oncostatin M (OSM) plays a crucial role in diverse inflammatory reactions. Although the food bioactive compound naringenin (NAR) exerts various useful effects, including antitussive, anti-inflammatory, hepatoprotective, renoprotective, antiarthritic, antitumor, antioxidant, neuroprotective, antidepressant, antinociceptive, antiatherosclerotic, and antidiabetic effects, the modulatory mechanism of NAR on OSM expression in neutrophils has not been specifically reported. In the current work, we studied whether NAR modulates OSM release in neutrophil-like differentiated (d)HL-60 cells.
View Article and Find Full Text PDFMolecules
December 2024
Laboratory of Advanced Materials in Biopharmaceutics and Technics, Institute of Chemistry, Moldova State University, MD-2009 Chisinau, Moldova.
Ten coordination compounds, [Cu(L)Cl] (), [Cu(L)NO] (), [Cu(L)Cl] (C3), [Cu(L)NO] (), [Cu(L)Cl] (), [Cu(L)NO] (), [Cu(L)NO] (), [Cu(L)Cl] (), [Cu(L)Cl] (), and [Cu(L)NO] (), containing pyridine derivatives of -methoxyphenyl-thiosemicarbazones were synthesized and characterized. The molecular structure of four compounds was investigated using single crystal X-ray diffraction. Spectral analysis techniques such as FT-IR, H NMR, C NMR, elemental analysis, and molar conductivity were used for all the synthesized compounds.
View Article and Find Full Text PDFChem Pharm Bull (Tokyo)
January 2025
Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan.
Life Sci
January 2025
Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, TS 500037, India. Electronic address:
Pulmonary fibrosis (PF) arises from dysregulated wound healing, leading to excessive extracellular matrix (ECM) deposition and impaired lung function. Macrophages exhibit high plasticity, polarizing to pro-inflammatory M1 during early inflammation and anti-inflammatory, fibrosis-inducing M2 during later stages of PF. Additionally, neutrophils and neutrophil extracellular traps (NETs) release mediated by peptidyl arginine deiminase (PAD-4), also play a key role in PF progression.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China.
Acute myeloid leukemia (AML) is a severe blood cancer with an urgent need for novel therapies for refractory or relapsed patients. Leukocyte-associated immunoglobulin-like receptor 1 (LAIR1), an immune suppressive receptor expressed on immune cells and AML blasts but minimally on hematopoietic stem cells (HSCs), represents a potential therapeutic target. But there has been limited research on therapies targeting LAIR1 for AML and no published reports on LAIR1 antibody-drug conjugate (ADC).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!