Alternating anoxic/oxic conditions have profound effects on both ammonium (AOB) and nitrite (NOB) oxidizing bacteria. In this study the influence of alternating anoxic/oxic condition on nitrifying granules was evaluated in a laboratory-scale column-type sequencing batch reactor (SBR). The anoxic phase was extended from 10 min to 120 min by increasing the anaerobic feeding time. Granules maintained their structure and characteristics during the whole study. The amount of granules with diameter larger than 0.8 mm kept above 95% (mass fraction), and the average settling velocity of particles maintained in the range of 125-130 m x h(-1). Despite the increase in the length of anoxic phases, the values of ammonium removal and nitrite accumulation in effluent still kept at (60 +/- 5)% and (85 +/- 5)%, respectively. Moreover, in the aeration period per cycle, NH4(+) -N removal loading rates, NO2(-) -N and NO3(-) -N accumulation loading rates retained stably at 90 mg x (L x h)(-1), 70 mg x (L x h)(-1) and 15 mg x (L x h)(-1), respectively. All these results suggested the changing anoxic conditions resulted from prolonged anaerobic feeding period had no significant effects on nitrifying granules.

Download full-text PDF

Source

Publication Analysis

Top Keywords

anaerobic feeding
12
feeding period
8
alternating anoxic/oxic
8
nitrifying granules
8
loading rates
8
h-1 h-1
8
[effects anaerobic
4
period nitrifying
4
nitrifying granular]
4
granular] alternating
4

Similar Publications

In subsurface methanogenic ecosystems, the ubiquity of methylated-compound-using archaea-methylotrophic methanogens-implies that methylated compounds have an important role in the ecology and carbon cycling of such habitats. However, the origin of these chemicals remains unclear as there are no known energy metabolisms that generate methylated compounds de novo as a major product. Here we identified an energy metabolism in the subsurface-derived thermophilic anaerobe Zhaonella formicivorans that catalyses the conversion of formate to methanol, thereby producing methanol without requiring methylated compounds as an input.

View Article and Find Full Text PDF

Suppression of carbon footprint through the CO-assisted pyrolysis of livestock waste.

Sci Total Environ

January 2025

Department of Earth Resources & Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea. Electronic address:

Concentrated animal feeding operation facility in modern livestock industry is pointed out as a point site causing environmental pollution due to massive generation of manure. While livestock manure is conventionally treated through biological processes, composting and anaerobic digestion, these practices pose difficulties in achieving efficient carbon utilization. To address this, this study suggests a pyrolytic valorization of livestock manure, with a focus on enhancing syngas production.

View Article and Find Full Text PDF

The most economically important trait of the is meat quality. Protein deposition is essential in muscle growth and nutritional quality formation. The effects and potential mechanisms of feed protein sources on crustaceans' muscle protein deposition have not been elucidated.

View Article and Find Full Text PDF

Valorization of Oil Cakes in Two-Pot Lactone Biosynthesis Process.

Foods

January 2025

Department of Food Technology and Assessment, Institute of Food Sciences, Warsaw University of Life Sciences, Str. Nowoursynowska 159C, 02-776 Warsaw, Poland.

Article Synopsis
  • Oil cakes, a byproduct of oilseed processing, have high fat and protein content, making them valuable in animal feed and biotechnological applications.
  • The article explores using five types of oil cakes to produce GDDL, a cyclic ester with a creamy-peach aroma, focusing on rapeseed cake due to its high oleic acid content.
  • The biotransformation process involves three steps and successfully produces about 1.7 g of GDDL/dm, demonstrating the potential for waste valorization and supporting circular economy practices in food processing.
View Article and Find Full Text PDF

Microbial manganese redox cycling drives co-removal of nitrate and ammonium.

J Environ Manage

January 2025

State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China. Electronic address:

Manganese (Mn), abundant in the Earth's crust, can act as an oxidant or a reductant for diverse nitrogen biotransformation processes. However, the functional microorganisms and their metabolic pathways, as well as interactions, remain largely elusive. Here, a microbial consortium was enriched from a mixture of freshwater sediments and activated sludge by feeding ammonium, nitrate and Mn(II), which established manganese-driven co-removal of nitrate and ammonium with removal rates of 5.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!