Microcontact printing (μCP) of polyelectrolytes is a facile and powerful method for surface micro/nanopatterning and functionalization. Poly(4-aminostyrene) (PAS) is a polyelectrolyte that can be converted to aryldiazonium salt and exhibits pH-dependent hydrophobicity. Here we demonstrate μCP of PAS and the expansion of this technique in various directions. First, the microcontact-printed PAS can be diazotized to micropattern biomolecules including DNA and protein and nanomaterials including single-walled carbon nanotubes and gold nanoparticles. Second, the diazotized PAS enables μCP of a metallic structure on a carbon surface. Third, the hydrophobic nature of PAS at the neutral pH allows the microcontact-printed PAS-based polyelectrolyte multilayer to be used as masks for wet etching. Lastly, this technique allows facile fabrication of highly engineered microparticles with a unique structure. Overall, this work has established a novel μCP platform with various potential applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la503393j | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!