Background: Cells harboring BRCA1/BRCA2 mutations are hypersensitive to inhibition of poly(ADP-ribose) polymerase-1 (PARP-1). We recently showed that interference with PARP-1 activity by NU1025 is strongly cytotoxic for BRCA1-positive BT-20 cells but not BRCA1-deficient SKBr-3 cells. These unexpected observations prompted speculation that other PARP-1 inhibitor(s) may be more cytotoxic towards SKBr-3 cells. In addition, interference with the DNA damage signaling pathway via (for instance) Ataxia telangiectasia mutated (ATM) kinase inhibition may induce synthetic lethality in DNA repair-deficient breast cancer cells and pharmacological interference with ATM activity may sensitize breast cancer cells to PARP-1 inactivation.
Methods: We determined drug cytotoxicity in human MCF-7 and SKBr-3 breast cancer cells using the CellTiterGLO Luminescent cell viability assay and a Tecan multi-label, multitask plate counter to measure generated luminescence. Changes in cell cycle progression were monitored by flow cytometric measurement of DNA content in cells stained with propidium iodide.
Results: Unlike NU1025, AZD2461, a new PARP-1 inhibitor, markedly reduced the numbers of living MCF-7 and SKBr-3 cells. ATM kinase inhibition (CP466722) was also cytotoxic for both MCF-7 and SKBr-3 cells. Furthermore, AZD2461 enhanced the cytotoxicity of CP466722 in both cell lines by inducing apoptosis, and concurrent inhibition of ATM and PARP-1 reduced cell proliferation more strongly than either single treatment.
Conclusions: Our data show that inhibition of PARP-1 by AZD2461 is synthetically lethal for NU1025-resistant MCF-7 and SKBr-3 breast cancer cells. They also indicate that DNA damage signaling is essential for survival of both SKBr-3 and MCF-7 cells, especially after inactivation of PARP-1.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4204161 | PMC |
http://dx.doi.org/10.15430/JCP.2014.19.2.125 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!