Assessment of laser induction of Bruch's membrane disruption in monkey by spectral-domain optical coherence tomography.

Br J Ophthalmol

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.

Published: January 2015

Purpose: Laser-induced choroidal neovascularisation is a widely used model for age-related macular degeneration. The success rates of induction have been relatively low in large animals such as monkeys. Our study aimed to investigate the laser-induced damages to the Bruch's membrane of monkeys using the spectral-domain optical coherence tomography (OCT).

Methods: Laser photocoagulation was performed in the posterior and peripheral fundus of a rhesus monkey using a 532 nm laser. The lesions were examined by fundus photography and spectral-domain OCT immediately after the procedure. Fluorescein angiography was performed after 3 and 4 weeks in the animal to assess the development of choroidal neovascularisation.

Results: A total of 44 lesions were produced in both eyes of the animal. Subretinal bubbles with or without haemorrhage were observed at 41 spots during the procedure. Spectral-domain OCT showed that laser damages varied considerably among lesions and the disruption of the Bruch's membrane could be visualised at 23 spots on the OCT images. Leakage of fluorescein was only observed after 3 and 4 weeks within the macular area at lesions where Bruch's membrane disruptions had been detected by OCT.

Conclusions: The presence of subretinal bubbles with haemorrhage is not an accurate indicator for successful disruption of the Bruch's membrane. Instead, spectral-domain OCT provides a better alternative to assess the retinal damages to the Bruch's membrane during laser induction of choroidal neovascularisation in monkeys.

Download full-text PDF

Source
http://dx.doi.org/10.1136/bjophthalmol-2014-305813DOI Listing

Publication Analysis

Top Keywords

bruch's membrane
24
spectral-domain oct
12
laser induction
8
spectral-domain optical
8
optical coherence
8
coherence tomography
8
choroidal neovascularisation
8
damages bruch's
8
subretinal bubbles
8
bubbles haemorrhage
8

Similar Publications

Biomedical research increasingly relies on three-dimensional (3D) cell culture models and artificial-intelligence-based analysis can potentially facilitate a detailed and accurate feature extraction on a single-cell level. However, this requires for a precise segmentation of 3D cell datasets, which in turn demands high-quality ground truth for training. Manual annotation, the gold standard for ground truth data, is too time-consuming and thus not feasible for the generation of large 3D training datasets.

View Article and Find Full Text PDF

Background: Clinically significant macular edema (CME) is the leading cause of visual loss after ophthalmologic surgery due to the release of inflammatory mediators promoted by the procedures. We aimed to evaluate the outcomes of intravitreal Ozurdex (700 µg dexamethasone) implants as a primary therapeutical option for post-surgical macular edema cases.

Methods: Patients with post-surgical macular edema diagnosed by optical coherence tomography (Cirrus SD-OCT) and treated with Ozudex were selected for the current study.

View Article and Find Full Text PDF

Purpose: We assessed the associations of macular layer thicknesses, measured using spectral-domain OCT (SD-OCT), with incident age-related macular degeneration (AMD) and AMD polygenic risk scores (PRS).

Design: Population-based cohort study PARTICIPANTS: 653 participants of the Alienor study, with biennial eye imaging from 2009 to 2024.

Methods: Macular layer thicknesses of eight distinct layers and three compound layers were automatically segmented based on SD-OCT imaging of the macula.

View Article and Find Full Text PDF

Comparison of Ultrasound Characteristics of Peripapillary Hyperreflective Ovoid Mass-Like Structures (PHOMS) and Optic Disc Drusen in Children.

J Neuroophthalmol

January 2025

Departments of Ophthalmology (DB, G-SY, GTL, RAA) and Neurology (DB, GTL, RAA), Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; and Division of Ophthalmology (AG, GTL, RAA), Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.

Background: In children, pseudopapilledema is frequently caused by peripapillary hyperreflective ovoid mass-like structures (PHOMS) or optic disc drusen (ODD). While enhanced depth imaging (EDI) OCT can identify both, lack of cooperation, especially from younger children due to the duration of testing, often necessitates the use of B-scan ultrasound (BSUS). This study investigated whether PHOMS are hyperreflective on BSUS and if BSUS can differentiate PHOMS from ODD.

View Article and Find Full Text PDF

Purpose: Spectral-domain OCT angiography (SD-OCTA) scans were used in an algorithm developed for swept-source OCT angiography (SS-OCTA) scans to determine if SD-OCTA scans yielded similar results for the measurement of hyperreflective foci (HRF) in intermediate age-related macular degeneration (iAMD).

Design: Retrospective study.

Participants: Forty eyes from 35 patients with iAMD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!