Molecular cloning and expression analysis of the STAT1 gene in the water buffalo (Bubalus bubalis).

Trop Anim Health Prod

Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, 24-1 Yongwu Road, Nanning, 530001, People's Republic of China.

Published: January 2015

Signal transducer and activator of transcription 1 (STAT1) is a critical component of the transcription factor complex in the interferon (IFN) signaling pathways. Of the seven STAT isoforms, STAT1 is a key mediator of type I and type III IFN signaling, but limited information is available for the STAT genes in the water buffalo. Here, we amplified and identified the complete coding sequence (CDS) of the buffalo STAT1 gene by using reverse transcription polymerase chain reaction (RT-PCR). Sequence analysis indicated that the buffalo STAT1 gene length size was 3437 bp, containing an open reading frame (ORF) of 2244 bp that encoded 747 amino acids for the first time. The buffalo STAT1 CDS showed 99, 98, 89, 93, 86, 85, and 87% identity with that of Bos taurus, Ovis aries, Homo sapiens, Sus scrofa, Rattus norvegicus, Mus musculus, and Capra hircus. The phylogenetic analyses revealed that the nearest relationship existed between the water buffalo and B. taurus. The STAT1 gene was ubiquitously expressed in 11 buffalo tissues by real-time PCR, whereas STAT1 was expressed at higher levels in the lymph. The STAT1 gene contained five targeted microRNA sequences compared with the B. taurus by the miRBase software that provide a fundamental for identifying the STAT1 gene function.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11250-014-0682-6DOI Listing

Publication Analysis

Top Keywords

stat1 gene
24
water buffalo
12
buffalo stat1
12
stat1
10
ifn signaling
8
buffalo
7
gene
6
molecular cloning
4
cloning expression
4
expression analysis
4

Similar Publications

Sinensetin attenuates LPS-induced acute pulmonary inflammation in mice and RAW264.7 cells by modulating NF-κB p65-mediated immune resistance and STAT3-mediated tissue resilience.

Int Immunopharmacol

January 2025

Hainan Pharmaceutical Research and Development Science Park, Hainan Medical University, Haikou 571157 China; Research Center for Drug Safety Evaluation of Hainan Province, Hainan Medical University, Haikou 571199 China. Electronic address:

Acute pulmonary inflammation is a severe lower respiratory tract infection. Sinensetin (SIN), a polymethoxyflavone with strong anti-inflammatory properties, is known to ameliorate LPS-induced acute inflammatory lung injury, but its molecular mechanisms are not fully understood. This study aimed to provide insight into the pharmacological mechanisms of SIN in attenuating acute pulmonary inflammation.

View Article and Find Full Text PDF

CDK14 regulates the development and repair of lung.

Cell Death Discov

January 2025

Institutes of physical science and information technology, Anhui University, Hefei, Anhui, 230601, China.

Cyclin-dependent kinases (CDK) 14 regulates cell cycle, tumor expansion by influencing the downstream targets of the canonical Wnt signaling pathway. However, the function of CDK14 during organ development and regeneration has not been investigated in genetically-modified animals. Here, we found that genetic ablation of Cdk14 influenced pulmonary vascular endothelial cells and alveolar epithelial cells during mice embryonic development as well as repair of lung after bleomycin or lipopolysaccharide induced injury.

View Article and Find Full Text PDF

This study aimed to identify splicing quantitative trait loci (cis-sQTL) in Nelore cattle muscle tissue and explore the involvement of spliced genes (sGenes) in immune system-related biological processes. Genotypic data from 80 intact male Nelore cattle were obtained using SNP-Chip technology, while RNA-Seq analysis was performed to measure gene expression levels, enabling the integration of genomic and transcriptomic datasets. The normalized expression levels of spliced transcripts were associated with single nucleotide polymorphisms (SNPs) through an analysis of variance using an additive linear model with the MatrixEQTL package.

View Article and Find Full Text PDF

Vitiligo is a complex autoimmune disease characterized by the loss of melanocytes, leading to skin depigmentation. Despite advances in understanding its genetic and molecular basis, the precise mechanisms driving vitiligo remain elusive. Integrating multiple layers of omics data can provide a comprehensive view of disease pathogenesis and identify potential therapeutic targets.

View Article and Find Full Text PDF

Metastatic melanoma causes a high rate of mortality. We conducted an integrated analysis to identify critical regulators associated with the prognosis, pathogenesis, and targeted therapies of metastatic-melanoma. A microarray dataset, GSE15605, including 12 metastatic-melanoma and sixteen normal skin (NS) samples, were obtained from the GEO database.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!