The aim of this study was to clarify and quantify factors influencing thinning during a thermoforming using a special simulation model that has three different flat surfaces such as 0 degree, 45 degree and 90 degree against a pressurizing force. Air pressure type samples were made by EVA and acrylic resin blank. Vacuum type samples were also made by EVA. Thickness gauge was employed to measure the thickness. As results, pressure forming showed significantly larger thinning at 45 and 90 degree surfaces and smaller thinning at 0 degree surface, 36% in thinning rate by vacuum forming and 66% by the pressure forming at 90 degree surface, and 17% and 20% at 45 degree surface, and 11% and 2% at 0 degree surfaces. Thinning was increased with the increase in distance from the centre in 0 degree surface and increased with the decrease in height in the vertical surface significantly. The air pressure, the material thickness in EVA (Drufosoft) and difference in material colour did not affect thinning rate. An acrylic resin material showed approximately 10% smaller thinning than EVA (Drufosoft). To retain enough thickness of 3 mm on 90 degree surface corresponding to an incisal labial aspect for pressure laminate type, over 55% reduction is taken into consideration and at least two 3-mm-thickness materials should be laminated. 0 degree surface showed at most 2 % reduction in pressure lamination; post thermoforming occlusal thickness became almost 6 mm with a usual 3 mm plus 3 mm lamination. Therefore, careful occlusal adjustment in an actual mouthguard fabrication to achieve an appropriate 2 mm thickness on this surface should be requested.

Download full-text PDF

Source
http://dx.doi.org/10.1111/edt.12145DOI Listing

Publication Analysis

Top Keywords

degree surface
24
degree
11
thinning
8
degree degree
8
air pressure
8
type samples
8
samples eva
8
acrylic resin
8
pressure forming
8
thinning degree
8

Similar Publications

Control of flow deflection angle around the corner using microjet array.

Sci Rep

January 2025

Department of Advanced Science and Technology, Toyota Technological Institute, 2-12-1 Hisakata, Tempaku-Ku, Nagoya, Aichi, 468-8511, Japan.

In this study, a new technique for active control of the flow around a corner is proposed and a key parameter dominating the flow deflection angle is proposed. In the technique, a microjet array is used for controlling the deflection of the flow at 33 m/s ~ 54 m/s around the 25-degree corner with a small downstream-facing step, the surface of which is lined with the micro-orifices from which jets are injected into the flow. The flow velocities around the corner are measured using a PIV (particle image velocimetry) technique under each condition for injecting the microjets into the flow.

View Article and Find Full Text PDF

Aims: Atrial septal defect (ASD) and partial abnormal pulmonary venous connection (PAPVC) are noncyanotic congenital heart defects (CHD) that produce a left-to-right shunt. This single-center retrospective study aimed to assess the hemodynamic impact of isolated ASD, isolated PAPVC, and ASD-associated PAPVC using cardiovascular magnetic resonance (CMR).

Methods And Results: From our CMR registry (2002-2024), 110 patients were included: isolated ASD (n=64), isolated PAPVC (n=18), ASD-associated PAPVC (n=28, mostly sinus venosus septal defects).

View Article and Find Full Text PDF

Herein, porous SnO microspheres in a three-dimensional (3D) hierarchical architecture were successfully synthesized via a facile hydrothermal route utilizing d-(+)-glucose and cetyltrimethylammonium bromide (CTAB), which act as reducing and structure-directing agents, respectively. Controlled adjustment of the CTAB to glucose mole ratio, reaction temperature, reaction time, and the calcination parameters all provided important clues toward optimizing the final morphologies of SnO with exceptional structural stability and reasonable monodispersity. Electron microscopy analysis revealed that microspheres formed were hierarchical self-assemblies of numerous primary SnO nanoparticles of ∼3-8 nm that coalesce together to form nearly monodispersed and ordered spherical structures of sizes in the range of 230-250 nm and are appreciably porous.

View Article and Find Full Text PDF

Aberrant Cortical Morphological Networks in First-Episode Schizophrenia.

Schizophr Bull

January 2025

Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China.

Background And Hypothesis: Population-based morphological covariance networks are widely reported to be altered in schizophrenia. Individualized morphological brain network approaches have emerged recently. We hypothesize that individualized morphological brain networks are disrupted in schizophrenia.

View Article and Find Full Text PDF

The purpose of this research is to describe the factors affecting hazardous chemotherapy exposure and strategies to foster chemotherapy safety among oncology nurses. Fifteen oncology nurses and 5 oncology nurse managers were recruited from 2 medical centers in the Midwest United States through convenience purposive sampling. A qualitative descriptive approach was employed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!