Recently, we discovered that Aflatoxin G1 (AFG1 ) induces chronic lung inflammatory responses, which may contribute to lung tumorigenesis in Balb/C mice. The cancer cells originate from alveolar type II cells (AT-II cells). The activated AT-II cells express high levels of MHC-II and COX-2, may exhibit altered phenotypes, and likely inhibit antitumor immunity by triggering regulatory T cells (Tregs). However, the mechanism underlying phenotypic alterations of AT-II cells caused by AFG1 -induced inflammation remains unknown. In this study, increased MHC-II expression in alveolar epithelium was observed and associated with enhanced Treg infiltration in mouse lung tissues with AFG1 -induced inflammation. This provides a link between phenotypically altered AT-II cells and Treg activity in the AFG1 -induced inflammatory microenvironment. AFG1 -activated AT-II cells underwent phenotypic maturation since AFG1 upregulated MHC-II expression on A549 cells and primary human AT-II cells in vitro. However, mature AT-II cells may exhibit insufficient antigen presentation, which is necessary to activate effector T cells, due to the absence of CD80 and CD86. Furthermore, we treated A549 cells with AFG1 and TNF-α together to mimic an AFG1 -induced inflammatory response in vitro, and we found that TNF-α and AFG1 coordinately enhanced MHC-II, CD54, COX-2, IL-10, and TGF-β expression levels in A549 cells compared to AFG1 alone. The phenotypic alterations of A549 cells in response to the combination of TNF-α and AFG1 were mainly regulated by TNF-α-mediated induction of the NF-κB pathway. Thus, enhanced phenotypic alterations of AT-II cells were induced in response to AFG1 -induced inflammation. Thus, AT-II cells are likely to suppress anti-tumor immunity by triggering Treg activity.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcp.24852DOI Listing

Publication Analysis

Top Keywords

at-ii cells
36
afg1 -induced
20
cells
18
phenotypic alterations
16
a549 cells
16
afg1
12
-induced inflammation
12
at-ii
9
enhanced phenotypic
8
alveolar type
8

Similar Publications

Mechanism of miR-130b-3p in relieving airway inflammation in asthma through HMGB1-TLR4-DRP1 axis.

Cell Mol Life Sci

December 2024

Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, 133002, People's Republic of China.

Asthma is a chronic inflammatory respiratory disease characterized by recurrent breathing difficulties caused by airway obstruction and hypersensitivity. Although there is diversity in their specific mechanisms, microRNAs (miRNAs) have a significant impact on the development of asthma. Currently, the contribution of miR-130b-3p to asthma remains elusive.

View Article and Find Full Text PDF

Koidz is a widely used classical traditional Chinese herbal medicine, that has shown remarkable efficacy in cancers. Colorectal cancer (CRC) is the most common malignant tumor globally. Interferon (IFN)-γ, a prominent cytokine involved in anti-tumor immunity that has cytostatic, pro-apoptotic, and immune-stimulatory properties for the detection and removal of transformed cells.

View Article and Find Full Text PDF

The role of HMGB1 on SiC NPs-induced inflammation response in lung epithelial-macrophage co-culture system.

Food Chem Toxicol

August 2024

State Key Laboratory of Trauma and Chemical Poisoning, National Institute for Occupational and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China. Electronic address:

In recent years, carbonized silicon nanoparticles (SiC NPs) have found widespread scientific and engineering applications, raising concerns about potential human health risks. SiC NPs may induce pulmonary damage through sustained inflammatory responses and oxidative stress, with unclear toxicity mechanisms. This study uses an in vitro co-culture model of alveolar macrophages (NR8383) and alveolar epithelial cells (RLE-6TN) to simulate the interaction between airway epithelial cells and immune cells, providing initial insights into SiC NP-triggered inflammatory responses.

View Article and Find Full Text PDF

Atractylenolide-I Alleviates Hyperglycemia-Induced Heart Developmental Malformations through Direct and Indirect Modulation of the STAT3 Pathway.

Phytomedicine

July 2024

Division of Histology and Embryology, International Joint Laboratory for Embryonic Development & Prenatal Medicine, School of Medicine, Jinan University, Guangzhou 510632, China; Key Laboratory for Regenerative Medicine of the Ministry of Education of China, Jinan University, Guangzhou 510632, China; Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, School of Medicine, Jinan University, Guangzhou 510317. Electronic address:

Background: Gestational diabetes could elevate the risk of congenital heart defects (CHD) in infants, and effective preventive and therapeutic medications are currently lacking. Atractylenolide-I (AT-I) is the active ingredient of Atractylodes Macrocephala Koidz (known as Baizhu in China), which is a traditional pregnancy-supporting Chinese herb.

Purpose: In this study, we investigated the protective effect of AT-I on the development of CHD in embryos exposed to high glucose (HG).

View Article and Find Full Text PDF

Atractylenolide II regulates the proliferation, ferroptosis, and immune escape of hepatocellular carcinoma cells by inactivating the TRAF6/NF-κB pathway.

Naunyn Schmiedebergs Arch Pharmacol

October 2024

Department of Traditional Chinese Medicine, Sun Yat-sen Memorial Hospital Affiliated to Sun Yat-sen University, Yuexiu District, No. 107, Yanjiang West Road, Guangzhou Guangdong Province, 510120, China.

Hepatocellular carcinoma (HCC) is a common and lethal tumor worldwide. Atractylenolide II (AT-II) is a natural sesquiterpenoid monomer, with anti-tumor effect. To address the effect and mechanisms of AT-II on HCC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!