Paper-based microfluidics: fabrication technique and dynamics of capillary-driven surface flow.

ACS Appl Mater Interfaces

Laboratory of Paper Coating and Converting and Center for Functional Materials, Abo Akademi University, Porthaninkatu 3, 20500 Åbo/Turku, Finland.

Published: November 2014

Paper-based devices provide an alternative technology for simple, low-cost, portable, and disposable diagnostic tools for many applications, including clinical diagnosis, food quality control, and environmental monitoring. In this study we report a two-step fabrication process for creating two-dimensional microfluidic channels to move liquids on a hydrophobized paper surface. A highly hydrophobic surface was created on paper by TiO2 nanoparticle coating using a high-speed, roll-to-roll liquid flame spray technique. The hydrophilic pattern was then generated by UV irradiation through a photomask utilizing the photocatalytic property of TiO2. The flow dynamics of five model liquids with differing surface tensions 48-72 mN·m(-1) and viscosities 1-15 mN·m(-2) was studied. The results show that the liquid front (l) in a channel advances in time (t) according to the power law l=Zt0.5 (Z is an empirical constant which depend on the liquid properties and channel dimensions). The flow dynamics of the liquids with low viscosity show a dependence on the channel width and the droplet volume, while the flow of liquids with high viscosity is mainly controlled by the viscous forces.

Download full-text PDF

Source
http://dx.doi.org/10.1021/am5055806DOI Listing

Publication Analysis

Top Keywords

flow dynamics
8
paper-based microfluidics
4
microfluidics fabrication
4
fabrication technique
4
technique dynamics
4
dynamics capillary-driven
4
surface
4
capillary-driven surface
4
flow
4
surface flow
4

Similar Publications

Background: Epidemiological studies associate an increase in breast cancer risk, particularly triple-negative breast cancer (TNBC), with lack of breastfeeding. This is more prevalent in African American women, with significantly lower rate of breastfeeding compared to Caucasian women. Prolonged breastfeeding leads to gradual involution (GI), whereas short-term or lack of breastfeeding leads to abrupt involution (AI) of the breast.

View Article and Find Full Text PDF

Flow-Based Coronary Artery Bypass Graft Patency Metrics: Uncertainty Quantification Simulations to Guide Development.

Cardiovasc Eng Technol

January 2025

Transonic Systems Inc., 34 Dutch Mill Road, Ithaca, New York, 14850, USA.

Purpose: Over time, transit time flow measurement (TTFM) has proven itself as a simple and effective tool for intra-operative evaluation of coronary artery bypass grafts (CABGs). However, metrics used to screen for possible technical error show considerable spread, preventing the definition of sharp cut-off values to distinguish between patent, questionable, and failed grafts. The simulation study presented in this paper aims to quantify this uncertainty for commonly used patency metrics, and to identify the most important physiological parameters influencing it.

View Article and Find Full Text PDF

Gastrointestinal tract-related cancers pose a significant health burden, with high mortality rates. In order to detect the anomalies of the gastrointestinal tract that may progress to cancer, a video capsule endoscopy procedure is employed. The number of video capsule endoscopic ( ) images produced per examination is enormous, which necessitates hours of analysis by clinicians.

View Article and Find Full Text PDF

Cardiorespiratory signals have long been treated as "noise" in functional magnetic resonance imaging (fMRI) research, with the goal of minimizing their impact to isolate neural activity. However, there is a growing recognition that these signals, once seen as confounding variables, provide valuable insights into brain function and overall health. This shift reflects the dynamic interaction between the cardiovascular, respiratory, and neural systems, which together support brain activity.

View Article and Find Full Text PDF

We propose a novel approach to investigate the brain mechanisms that support coordination of behavior between individuals. Brain states in single individuals defined by the patterns of functional connectivity between brain regions are used to create joint symbolic representations of brain states in two or more individuals to investigate symbolic dynamics that are related to interactive behaviors. We apply this approach to electroencephalographic data from pairs of subjects engaged in two different modes of finger-tapping coordination tasks (synchronization and syncopation) under different interaction conditions (uncoupled, leader-follower, and mutual) to explore the neural mechanisms of multi-person motor coordination.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!