BRI2 ectodomain affects Aβ42 fibrillation and tau truncation in human neuroblastoma cells.

Cell Mol Life Sci

Neurochemistry Laboratory, Department of Clinical Chemistry, VU University Medical Center (VUmc), Room PK1 Br016, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands,

Published: April 2015

Alzheimer's disease (AD) is pathologically characterized by the presence of misfolded proteins such as amyloid beta (Aβ) in senile plaques, and hyperphosphorylated tau and truncated tau in neurofibrillary tangles (NFT). The BRI2 protein inhibits Aβ aggregation via its BRICHOS domain and regulates critical proteins involved in initiating the amyloid cascade, which has been hypothesized to be central in AD pathogenesis. We recently detected the deposition of BRI2 ectodomain associated with Aβ plaques and concomitant changes in its processing enzymes in early stages of AD. Here, we aimed to investigate the effects of recombinant BRI2 ectodomain (rBRI276-266) on Aβ aggregation and on important molecular pathways involved in early stages of AD, including the unfolded protein response (UPR), phosphorylation and truncation of tau, as well as apoptosis. We found that rBRI276-266 delays Aβ fibril formation, although less efficiently than the BRI2 BRICHOS domain (BRI2 residues 113-231). In human neuroblastoma SH-SY5Y cells, rBRI276-266 slightly decreased cell viability and increased up to two-fold the Bax/Bcl-2 ratio and the subsequent activity of caspases 3 and 9, indicating activation of apoptosis. rBRI276-266 upregulated the chaperone BiP but did not modify the mRNA expression of other UPR markers (CHOP and Xbp-1). Strikingly, rBRI276-266 induced the activation of GSK3β but not the phosphorylation of tau. However, exposure to rBRI276-266 significantly induced the truncation of tau, indicating that BRI2 ectodomain can contribute to NFT formation. Since BRI2 can also regulate the metabolism of Aβ, the current data suggests that BRI2 ectodomain is a potential nexus between Aβ, tau pathology and neurodegeneration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11113771PMC
http://dx.doi.org/10.1007/s00018-014-1769-yDOI Listing

Publication Analysis

Top Keywords

bri2 ectodomain
20
bri2
9
human neuroblastoma
8
aβ aggregation
8
brichos domain
8
early stages
8
truncation tau
8
apoptosis rbri276-266
8
rbri276-266 induced
8
tau
7

Similar Publications

Myelin basic protein (MBP) is the second most abundant protein in the central nervous system and is responsible for structural maintenance of the myelin sheath covering axons. Previously, we showed that MBP has a more proactive role in the oligodendrocyte homeostasis, interacting with membrane-associated proteins, including integral membrane protein 2B (ITM2B or Bri2) that is associated with familial dementias. Here, we report that the molecular dynamics of the in silico-generated MBP-Bri2 complex revealed that MBP covers a significant portion of the Bri2 ectodomain, assumingly trapping the furin cleavage site, while the surface of the BRICHOS domain, which is responsible for the multimerization and activation of the Bri2 high-molecular-weight oligomer chaperone function, remains unmasked.

View Article and Find Full Text PDF

Functional BRI2-TREM2 interactions in microglia: implications for Alzheimer's and related dementias.

EMBO Rep

March 2024

Department of Pharmacology, Physiology & Neuroscience New Jersey Medical School, Brain Health Institute, Jacqueline Krieger Klein Center in Alzheimer's Disease and Neurodegeneration Research, Rutgers, The State University of New Jersey, 205 South Orange Ave, Newark, NJ, 07103, USA.

ITM2B/BRI2 mutations cause Alzheimer's Disease (AD)-related dementias. We observe heightened ITM2B/BRI2 expression in microglia, a pivotal cell type in AD due to risk-increasing variants in the microglial gene TREM2. Single-cell RNA-sequencing demonstrates a Trem2/Bri2-dependent microglia cluster, underscoring their functional interaction.

View Article and Find Full Text PDF

The precursor protein BRI2 that in its mutated form is associated with British and Danish dementia, can regulate critical processes involved in AD pathogenesis including not only the metabolism of amyloid precursor protein (APP) and formation of Aβ, but also the levels of secreted insulin degrading enzyme (IDE), an enzyme involved in Aβ clearance. We recently observed increased levels of a 45kDa BRI2 form as well as BRI2 ectodomain deposits in Aβ plaques in human AD hippocampus, which may affect BRI2 functional activity. Since BRI2 regulated the levels of secreted IDE and subsequent degradation of Aβ in human cell culture models, we explored if BRI2 changes could affect the Aβ degradation capacity of IDE in human hippocampus (n=28).

View Article and Find Full Text PDF

BRI2 ectodomain affects Aβ42 fibrillation and tau truncation in human neuroblastoma cells.

Cell Mol Life Sci

April 2015

Neurochemistry Laboratory, Department of Clinical Chemistry, VU University Medical Center (VUmc), Room PK1 Br016, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands,

Alzheimer's disease (AD) is pathologically characterized by the presence of misfolded proteins such as amyloid beta (Aβ) in senile plaques, and hyperphosphorylated tau and truncated tau in neurofibrillary tangles (NFT). The BRI2 protein inhibits Aβ aggregation via its BRICHOS domain and regulates critical proteins involved in initiating the amyloid cascade, which has been hypothesized to be central in AD pathogenesis. We recently detected the deposition of BRI2 ectodomain associated with Aβ plaques and concomitant changes in its processing enzymes in early stages of AD.

View Article and Find Full Text PDF

Regulated intramembrane proteolysis is a widely accepted concept describing the processing of various transmembrane proteins via ectodomain shedding followed by an intramembrane cleavage. The resulting cleavage products can be involved in reverse signaling. Presenilins, which constitute the active center of the γ-secretase complex, signal peptide peptidase (SPP), and its homologues, the SPP-like (SPPL) proteases are members of the family of intramembrane-cleaving aspartyl proteases of the GXGD-type.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!