The emission of floral terpenes plays a key role in pollination in many plant species. We hypothesized that the floral phyllospheric microbiota could significantly influence these floral terpene emissions because microorganisms also produce and emit terpenes. We tested this hypothesis by analyzing the effect of removing the microbiota from flowers. We fumigated Sambucus nigra L. plants, including their flowers, with a combination of three broad-spectrum antibiotics and measured the floral emissions and tissular concentrations in both antibiotic-fumigated and non-fumigated plants. Floral terpene emissions decreased by ca. two thirds after fumigation. The concentration of terpenes in floral tissues did not decrease, and floral respiration rates did not change, indicating an absence of damage to the floral tissues. The suppression of the phyllospheric microbial communities also changed the composition and proportion of terpenes in the volatile blend. One week after fumigation, the flowers were not emitting β-ocimene, linalool, epoxylinalool, and linalool oxide. These results show a key role of the floral phyllospheric microbiota in the quantity and quality of floral terpene emissions and therefore a possible key role in pollination.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4205883 | PMC |
http://dx.doi.org/10.1038/srep06727 | DOI Listing |
PLoS One
January 2025
Division of Biotechnology, Department of Agronomy and Plant Breeding, College of Agricultural and Natural Resources, University of Tehran, Karaj, Iran.
Objective: The aromatic profile of Rosa canina L. petals hold immense potential for the fragrance and pharmaceutical industries. This study aims to investigate the chemical composition and gene expression patterns across different floral development stages to uncover the biosynthetic pathways of floral scent.
View Article and Find Full Text PDFCurr Issues Mol Biol
January 2025
Guizhou Horticulture Institute/Horticultural Engineering Technology Research Center of Guizhou, Guizhou Academy of Agricultural Sciences, Guiyang 550000, China.
Terpenes are critical components of the floral fragrance component in , synthesized by terpene synthase (TPS). Analysis of the genome and transcriptional data revealed that the gene was significantly up-regulated during flowering periods, showing a strong correlation with the accumulation of aromatic monoterpenes in the floral components of . Consequently, the gene was selected for further analysis.
View Article and Find Full Text PDFFood Res Int
February 2025
Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China. Electronic address:
Aroma plays a crucial role in the quality of pure green tea beverage. However, there are limited methods to improve their aroma. In this study, green tea produced using shaking and piling process (SPGT) demonstrated a notable improvement in aromatic intensity, particularly in floral, fruity, and sweet notes.
View Article and Find Full Text PDFFood Res Int
February 2025
Shandong University of Science and Technology, Qingdao 266590, China. Electronic address:
The lack of sufficient flavour in perry represents a barrier to its further industrialization. This study aimed to investigate the effects of glutathione (GSH), β-glucosidase (Glu), and α-L-rhamnosidase (Rha) pretreatments, the fermentation temperature from 16 °C to 28 °C, and the aging time of 1, 2, and 3 years (PA1, PA2, and PA3) on the physicochemical properties, organic acids, and aroma profiles were investigated. The results demonstrated that the synergistic effect of Glu, Rha, and GSH was more effective than their individual or paired applications in enhancing the varietal aromas.
View Article and Find Full Text PDFFood Res Int
February 2025
College of Tea Science, Guizhou University, Guiyang 550025, China. Electronic address:
Volatile terpenoids are major substances responsible for the floral and fruity scents of teas. However, little is known about the regulatory mechanisms of terpenoid biosynthesis pathways in tea plants. 'Zhenfeng Yesheng tea' (ZFYS), a distinctive tea tree germplasm resource in Guizhou province, is known for its unique flavor characterized by a mellow taste and a floral aroma.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!