Alkylene-bridged viologen dendrimers: versatile cell delivery tools with biosensing properties.

Org Biomol Chem

Institute of Chemistry of New Materials, University of Osnabrück, Barbarastr. 7, D-49076 Osnabrück, Germany.

Published: December 2014

The synthesis of two types of viologen dendrimers with peripheral carboxyl groups is described. Their interaction with plasmid DNA and CT-DNA and the influence of time evolution and electrolyte on dendriplex formation have been electrochemically investigated. A negative potential shift appearing in the cyclic voltammograms of the dendrimers indicates dendriplex formation on the time scale of 15 to 19 minutes, i.e. similar to those determined empirically for other dendrimer types. The presence or absence of the negative potential shift can be used to check the stability towards sodium chloride and different cell growth media directing to sucrose for cell incubation experiments. The electrolyte content of commercially available cell growth media inhibits the dendriplex formation in solution prior to plasmid addition. Furthermore, a low salt stability of 20 mM sodium chloride for viologen dendriplexes has been confirmed, also recommending the use of lysosomotropic sucrose. The two types of viologen dendrimers have been combined with two plasmids differing in the number of base pairs. Four immortal cell lines have been tested to check the suitability of viologen dendriplexes as gene delivery systems. Probably due to the absence of terminal amino groups and endosomolytic substances only a small transfection efficiency of dendriplexes was achieved at low pH, generally excluding in vivo applications. With the larger pHSV-eGFP plasmid (5743 bp) no transfected cells were observed indicating a preference for shorter plasmids.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4ob00560kDOI Listing

Publication Analysis

Top Keywords

viologen dendrimers
12
dendriplex formation
12
types viologen
8
negative potential
8
potential shift
8
stability sodium
8
sodium chloride
8
cell growth
8
growth media
8
viologen dendriplexes
8

Similar Publications

Generation Dependent Effects and Entrance to Mitochondria of Hybrid Dendrimers on Normal and Cancer Neuronal Cells In Vitro.

Biomolecules

March 2020

Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland.

Dendrimers as drug carriers can be utilized for drugs and siRNA delivery in central nervous system (CNS) disorders, including various types of cancers, such as neuroblastomas and gliomas. They have also been considered as drugs per se, for example as anti-Alzheimer's disease (AD), anti-cancer, anti-prion or anti-inflammatory agents. Since the influence of carbosilane-viologen-phosphorus dendrimers (SMT1 and SMT2) on the basic cellular processes of nerve cells had not been investigated, we examined the impact of two generations of these hybrid macromolecules on two murine cell lines-cancer cell line N2a (mouse neuroblastoma) and normal immortalized cell line mHippoE-18 (embryonic mouse hippocampal cell line).

View Article and Find Full Text PDF

Fourth generation polyamidoamine dendrimer (PAMAM, G4) modified with fluorescein units (F) at the periphery and Pt nanoparticles stabilized by L-ascorbate were prepared. These dendrimers modified with hydrophobic fluorescein were used to achieve self-assembling structures, giving rise to the formation of nanoaggregates in water. The photoactive fluorescein units were mainly used as photosensitizer units in the process of the catalytic photoreduction of water propitiated by light.

View Article and Find Full Text PDF

Hydrogen-Bonded Polymer-Porphyrin Assemblies in Water: Supramolecular Structures for Light Energy Conversion.

Macromol Rapid Commun

September 2017

Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular Materials, Friedrich-Alexander-University Erlangen-Nürnberg, Egerlandstr. 3, 91058, Erlangen, Germany.

In this study, a new type of functional, self-assembled nanostructure formed from porphyrins and polyamidoamine dendrimers based on hydrogen bonding in an aqueous solution is presented. As the aggregates formed are promising candidates for solar-energy conversion, their photocatalytic activity is tested using the model reaction of methyl viologen reduction. The self-assembled structures show significantly increased activity as compared to unassociated porphyrins.

View Article and Find Full Text PDF

Thrombin is an essential part of the blood coagulation system; it is a serine protease that converts soluble fibrinogen into insoluble strands of fibrin, and catalyzes many other coagulation-related reactions. Absorption at its surface of small nanoparticles can completely change the biological properties of thrombin. We have analyzed the influence on thrombin of 3 different kinds of small nanoparticles: dendrimers (phosphorus-based, carbosilane based and polyamidoamine) and 2 hybrid systems containing carbosilane, viologen and phosphorus dendritic scaffolds in one single molecule, bearing different flexibility, size and surface charge.

View Article and Find Full Text PDF

Photoactive viologen fragments were covalently embedded within the material framework during the self-assembly and sol-gel polymerisation of phosphonate-terminated dendrimers and soluble titanium-oxo-species. The resulting porous anisotropic phosphonate-bridged-crystalline anatase materials serve as new hosts to disperse and stabilize small gold nanoparticles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!