1. Paracetamol overdose remains the leading cause of acute liver failure in humans. This study was undertaken in cynomolgus monkeys to study the pharmacokinetics, metabolism and the potential for hepatotoxic insult from paracetamol administration as a possible model for human toxicity. 2. No adverse effects were observed for doses of up to 900 mg/kg/d for 14 d. Only minor sporadic increases in alanine aminotransferase, aspartate aminotransferase and glutamate dehydrogenase in a number of animals were observed, with no clear dose response. 3. Toxicokinetic analysis showed good plasma exposure, albeit with less than proportional rises in Cmax and AUC, with increasing dose. The Cmax values in monkey were up to 3.5 times those associated with human liver toxicity and the AUC approx. 1000 times those associated with liver enzyme changes in 31-44% of human subjects. 4. Metabolite profiling of urine by (1)H NMR spectroscopy revealed paracetamol and its glucuronide and sulphate metabolites. Glutathione-derived metabolites, e.g. the cysteinyl conjugate, were only present in very low concentrations whilst the mercapturate was not detected. 5. These in vivo observations demonstrated that the cynomolgus monkey is remarkably resistant to paracetamol-induced toxicity and a poor model for investigating paracetamol-related hepatotoxicity in humans.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/00498254.2014.973000 | DOI Listing |
Microorganisms
January 2025
Department of Psychology, University of Houston, Houston, TX 77004, USA.
Social housing changes are likely stressful and can be associated with diarrhea, the most common health problem noted in captive macaque populations. Diarrhea may reflect a negative shift in the gut flora ("gut dysbiosis"). This study reported on changes in the gut microbiome composition of juvenile primates () that experienced a change in social housing and exhibited diarrhea.
View Article and Find Full Text PDFInt J Pharm
January 2025
Université Paris-Saclay, Inserm, Maladies et hormones du système nerveux, 94276 Le Kremlin-Bicêtre, France. Electronic address:
Small interfering RNA (siRNA) has shown promising results for the treatment of Charcot-Marie-Tooth disease 1A (CMT1A) caused by overexpression of peripheral myelin protein (PMP22), leading to myelin dysfunction and axonal damage. Recently, we developed siRNA PMP22-squalene (SQ) nanoparticles (NPs) for intravenous use. Three consecutive injections of siRNA PMP22-SQ NPs at a cumulative dose of 1.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Pharmaceutical Sciences, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA, US.
The opioid crisis, driven by synthetic opioids like fentanyl, demands innovative solutions. The opioid antidote naloxone has a short action ( ~ 1 hour), requiring repeated doses. To address this, we present a new and simple naloxone prodrug delivery system repurposing a hydrophilic derivative of acoramidis, a potent transthyretin ligand.
View Article and Find Full Text PDFAntibodies (Basel)
December 2024
Eli Lilly and Company, Lilly Corporate Center Indianapolis, Indianapolis, IN 46285, USA.
Background: The prediction of human clearance (CL) and subcutaneous (SC) bioavailability is a critical aspect of monoclonal antibody (mAb) selection for clinical development. While monkeys are a well-accepted model for predicting human CL, other preclinical species have been less-thoroughly explored. Unlike CL, predicting the bioavailability of SC administered mAbs in humans remains challenging as contributing factors are not well understood, and preclinical models have not been systematically evaluated.
View Article and Find Full Text PDFZool Res
January 2025
BGI Research, Hangzhou, Zhejiang 310030, China.
The amniote pallium, a vital component of the forebrain, exhibits considerable evolutionary divergence across species and mediates diverse functions, including sensory processing, memory formation, and learning. However, the relationships among pallial subregions in different species remain poorly characterized, particularly regarding the identification of homologous neurons and their transcriptional signatures. In this study, we utilized single-nucleus RNA sequencing to examine over 130 000 nuclei from the macaque ( ) neocortex, complemented by datasets from humans ( ), mice ( ), zebra finches ( ), turtles ( ), and lizards ( s), enabling comprehensive cross-species comparison.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!