As the most common primary bone neoplasm, osteosarcoma is highly aggressive and represents a high risk to human health. Biological agents, including tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), are considered promising therapeutic strategies for osteosarcoma. The current issue limiting the application of TRAIL gene therapy is that normal cells are also affected due to the lack of tumor selectivity. The present study aimed to employ the miRNA response elements (MREs) of microRNA (miR)-34 and miR-122, which are tumor suppressors, to enable the selective expression of TRAIL by adenoviral vectors in osteosarcoma cells. The results revealed that miR-34 and miR-122 were underexpressed in osteosarcoma tissues, compared with normal tissues. The MREs of miR-34 and miR-122 ensured that the luciferase gene was expressed selectively in osteosarcoma cells. Adenovirus (Ad)-TRAIL-34-122, which expressed TRAIL in an miR-34 and miR-122-regulated manner, selectively expressed TRAIL in the osteosarcoma cells assessed, which was detected using reverse transcription quantitative polymerase chain reaction, immunoblotting and ELISA. Apoptosis and cytotoxicity were also detected in the osteosarcoma cells, compared with the normal cells. Animal experiments further indicated that Ad-TRAIL-34-122 was able to reduce the growth of osteosarcoma xenografts without toxicity to the liver. In conclusion, the present study identified a novel miRNA-regulated biological cancer therapy against osteosarcoma, which is tumor selective and may be promising for future clinical treatment.

Download full-text PDF

Source
http://dx.doi.org/10.3892/mmr.2014.2710DOI Listing

Publication Analysis

Top Keywords

osteosarcoma cells
16
mir-34 mir-122
12
osteosarcoma
10
tumor necrosis
8
necrosis factor-related
8
factor-related apoptosis-inducing
8
apoptosis-inducing ligand
8
response elements
8
normal cells
8
compared normal
8

Similar Publications

Introduction: This study utilized a injectable curcumin (Cur)-infused calcium phosphate silicate cement (CPSC) for addressing defects caused by bone cancer, and evaluated its promoting bone regeneration and exerting cytotoxic effects on osteosarcoma cells.

Methods: The material's physicochemical properties, biocompatibility with osteoblasts, and cytotoxicity toward osteosarcoma cells were rigorously analyzed.

Results: The findings demonstrate that CPSC-Cur signicantly prolongs the setting time, which can be optimized by adding silanized cellulose nanober (CNF-SH) to achieve a balance between workability and mechanical strength.

View Article and Find Full Text PDF

Design, synthesis, and biological evaluation of Flavokavain B derivatives as potent TRF2 inhibitors for the treatment of Osteosarcoma.

Eur J Med Chem

January 2025

Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, People's Republic of China. Electronic address:

Telomere repeat-binding factor 2 (TRF2) is a crucial component of the shelterin complex, commonly overexpressed in osteosarcoma (OS) and positively correlated with its progression. To date, effective TRF2 inhibitors for in vivo applications remain limited. In this study, a series of Flavokavain B derivatives were designed and synthesized, and their TRF2 inhibition and antitumor activity were evaluated.

View Article and Find Full Text PDF

Enzyme-enzyme interactions are fundamental to the function of cells. Their atomistic mechanisms remain elusive mainly due to limitations of in-cell measurements. We address this challenge by atomistically modeling, for a total of ≈80 μs, a slice of the human cell cytoplasm that includes three successive enzymes along the glycolytic pathway: glyceraldehyde-3-phosphate dehydrogenase (GAPDH), phosphoglycerate kinase (PGK), and phosphoglycerate mutase (PGM).

View Article and Find Full Text PDF

Background: Osteosarcoma is the most common malignant bone tumour with limited treatment options and poor outcomes in advanced metastatic cases. Current immunotherapies show limited efficacy, highlighting the need for novel therapeutic approaches. Systemic immune activation by Toll-like receptor 4 (TLR4) immunostimulants has shown great promise; however, current TLR4 agonists' toxicity hinders this systemic approach in patients with osteosarcoma.

View Article and Find Full Text PDF

iRGD-Targeted Biosynthetic Nanobubbles for Ultrasound Molecular Imaging of Osteosarcoma.

Int J Nanomedicine

January 2025

Department of Ultrasound, The second People's Hospital of Shenzhen, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518061, People's Republic of China.

Purpose: Osteosarcoma is the most common primary malignant tumor of the bone. However, there is a lack of effective means for early diagnosis due to the heterogeneity of tumors and the complexity of tumor microenvironment. αvβ3 integrin, a crucial role in the growth and spread of tumors, is not only an effective biomarker for cancer angiogenesis, but also highly expressed in many tumor cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!