AI Article Synopsis

Article Abstract

There is a need for new options for reducing the side effects of cancer treatment, without compromising efficacy, enabling patients to complete treatment regimens. The botanical compound LCS101 exhibits inhibitory effects on cancer cell growth, and reduces chemotherapy-induced hematological toxicities. The aim of the present study is to examine the selectivity of the effects of the compound, alone and in conjunction with conventional chemotherapy agents, on cancer cell proliferation. The effects of LCS101 were tested on a number of cancer cell lines (breast, MCF7, MDA-MB‑231; colorectal, HCT116; prostate, PC-3, DU-145) and on non-tumorigenic normal human epithelial cells (breast, MCF10A; prostate, EP#2). Cell viability was analyzed using an XTT assay and observed by light microscopy. Necrosis and apoptosis were examined using FACS analysis and immunoblotting. LCS101 selectively induced cell death in breast, colon and prostate cancer cell lines, as measured by XTT assay. Light microscopy and FACS analysis showed changes indicative of a necrotic process. LCS101 was also found to induce PARP-1 reduction in breast cancer cells, with no effect on non-tumorigenic breast epithelial cells. While LCS101 increased cell death in cancer cells exposed to doxorubicin and 5-FU, it showed a protective effect on non-tumorigenic human epithelial cells from chemotherapy-induced cell death. A similar selective effect was observed with apoptosis-associated PARP-1 cleavage. The findings demonstrate that the anti-proliferative effects exhibited by the botanical compound LCS101 are selective to cancer cells, and offer protection to non-tumorigenic normal epithelial cells from chemotherapy agents.

Download full-text PDF

Source
http://dx.doi.org/10.3892/ijo.2014.2711DOI Listing

Publication Analysis

Top Keywords

cancer cell
16
epithelial cells
16
botanical compound
12
compound lcs101
12
cell death
12
cancer cells
12
cancer
9
cancer treatment
8
effects cancer
8
cell
8

Similar Publications

The efficacy of photodynamic treatment (PDT) against deep-seated tumor is hindered by low penetration depth of light as well as hypoxic conditions which prevails in tumor. To overcome this limitation, Near-infrared (NIR) absorbing photosensitizers have been investigated actively. In the present study we evaluated the PDT efficacy of an NIR absorbing chlorophyll derivative 'Cycloimide Purpurin-18 (CIPp-18)' in Human Breast carcinoma (MCF-7) and cervical adenocarcinoma (Hela) cells under normoxic and hypoxic conditions.

View Article and Find Full Text PDF

Liver cancer poses a global health challenge with limited therapeutic options. Notably, the limited success of current therapies in patients with primary liver cancers (PLCs) may be attributed to the high heterogeneity of both hepatocellular carcinoma (HCCs) and intrahepatic cholangiocarcinoma (iCCAs). This heterogeneity evolves over time as tumor-initiating stem cells, or cancer stem cells (CSCs), undergo (epi)genetic alterations or encounter microenvironmental changes within the tumor microenvironment.

View Article and Find Full Text PDF

TRPV4 as a Novel Regulator of Ferroptosis in Colon Adenocarcinoma: Implications for Prognosis and Therapeutic Targeting.

Dig Dis Sci

January 2025

Ningxia Medical University, Xing Qing Block, Shengli Street No.1160, Yin Chuan City, 750004, Ningxia Province, People's Republic of China.

Background: Colon adenocarcinoma (COAD) is a leading cause of cancer-related mortality worldwide. Transient receptor potential vanilloid 4 (TRPV4), a calcium-permeable non-selective cation channel, has been implicated in various cancers, including COAD. This study investigates the role of TRPV4 in colon adenocarcinoma and elucidates its potential mechanism via the ferroptosis pathway.

View Article and Find Full Text PDF

Role of immune cell homeostasis in research and treatment response in hepatocellular carcinoma.

Clin Exp Med

January 2025

Department of Thoracic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.

Introduction Recently, immune cells within the tumor microenvironment (TME) have become crucial in regulating cancer progression and treatment responses. The dynamic interactions between tumors and immune cells are emerging as a promising strategy to activate the host's immune system against various cancers. The development and progression of hepatocellular carcinoma (HCC) involve complex biological processes, with the role of the TME and tumor phenotypes still not fully understood.

View Article and Find Full Text PDF

Background: Immunosuppression might increase the risk of skin cancer in organ transplant recipients (OTRs), with azathioprine (AZA), exerting a fundamental role in the carcinogenesis of those tumors. This systematic review and meta-analysis aims to address the risk of developing malignant skin neoplasms in OTRs undergoing immunosuppression with AZA.

Methods: PubMed, Cochrane and Embase were searched for studies with OTRs who have a treatment regimen involving Azathioprine therapy after transplantation and that analyzed the emergence of skin neoplasia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!